

Mathematic for Primary Stage - Year 4

.

2013 _ 2014

غير مصرح بتداول هذا الكتاب خارج وزارة التربية والتعليم

Arab Republic of Egypt Ministry of Education Book Sector

for Primary Stage - Year 4

first term

Authors

Dr. Fayez Mourad Mena Dr. Jean Michael Hanna Dr. Ahmed Mohamed Sayed Ahmed

Modified by

Experts of Mathematics, Counsellor of Mathematics Bureau and Curriculum Development Centre

2013 _ 2014

غير مصرح بتداول هذا الكتاب خارج وزارة التربية والتعليم

Foreword

Dear students,

- We are pleased to introduce this book "*Mathematics for Primary stage Year 4*" to our children. We have done all what we can to make studying mathematics an interesting job for you. We are confident in your abilities in understanding the subject of the book, but even seeking for more.
- Besides the interesting figures and drawings, we took into consideration to increase crosscurricular and real life mathematics applications, where you sense the value and importance of studying mathematics. In many situations, you will find that we ask you to use a calculator to check mathematical operations, and invite you to use the computer to conduct some operations and draw some figures and decorate them. Towards the end of every unit, you will find some activities (sometimes may be closer to puzzles), in order to enjoy studying mathematics, where you will find great, but calculated, challenges that alerts your minds and develops your tendencies.
- Be careful to follow all what is written, conduct all activities and do not hesitate to question your teacher in all what you may face of any difficulties.
- Remember that many of the mathematics questions which have more than one correct answer, and studying it bears values that reflect this great humanitarian effort.

May God help you and us to acheive what is good for our beloved nation Egypt.

The authors

Large Numbers and Operations on them

Lesson 1:	Hundred thousands	2
Lesson 2:	Millions	6
Lesson 3:	Milliards (Billions)	12
Lesson 4:	Operations on Large Numbers	14
Unit 1 Activities		28
General Exe	ercises on Unit 1	29

Geometry

Lesson 1:	Relation between Two Straight Lines and Geometric Constructions	31
Lesson 2:	Polygons	36
Lesson 3:	The Triangle	42
Lesson 4:	Applications	48
Unit 2 Acti	vities	50
General Exe	ercises on Unit 2	51

Multiples, Factors and Divisibility

Lesson 1:	Multiples	53
Lesson 2:	Divisibility	59
Lesson 3:	Factors and Prime Numbers	63
Lesson 4:	Common Factors and Highest Common Factor (H.C.F.)	66
Lesson 5:	Common Multiples and Lowest Common Multiple (L.C.M.)	68
Unit 3 Acti	vities	71
General Exe	ercises on Unit 3	72

Contents

Measurement

General I	Exercises	 89
General Exerc	cises on Unit 4	 88
Unit 4 Activit		
Lesson 2:	The Area	 80
Lesson 1:	The Length	 74

General Revision - For the first Term	94
Model eixam - For the first Term	101

Unit One

Large Numbers and Operations on them

- Hundred thousands
- Millions,
- Milliards (Billions)
- Operations on Large Numbers
- Unit 1 Activities
- General Exercises on Unit 1

Hundred Thousands

99 999 + 1 = 100 000

This number is read as "hundred thousand"

Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Units
	9	9	9	9	9
					1
1	0	0	0	0	0

Exercise 1

2

Lesson 1

Write the numbers.

iousand: undreds Tens Units

Mathematics for Primary Stage-Year 4

lundred ousands Ten ousands

Number	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Units
752 341						
605 618						
78 539						
58 002						

Shorouk Press

Underline the correct number, in digits, which express each of the following words.

a one hundred sixty thousand, seven hundred and forty

- **b** one hundred thousand, three hundred and seventy-five
- c seventy thousand, five hundred and ninty- three

Complete as the example.

Ex	Example: 147 962 = 962 + 147 000							
		= 2 + 60 + 900 + 7 000 + 40 000 + 100 000						
а	672 384	= 384 +						
		= 4 + 80 +						
b	126 459	= 459 +						
-		= 9 +						
	25 609	- 609 +						
C	35 608	= 608 + =						

5 Read the following numbers, then write them in words.

- **a** 712365
- **b** 105206
- **c** 300418

7

6 Write the value of the circled digit in each of the following numbers.

а	27 35 543 09	1	b	156	3 <mark>4</mark> 8 045	с f	723	608
d	543 09	2	е	230	045	f	467	900
				-			-	
Co	mplete usi	ng the	suit	table	sign < ,	> or =	in ead	ch 🗌.
а	132 045		93 2	245	b	85 679		302 001
С	100 074		74 (001	d	321 587		321 587
е	20 864		20	531	f	437 786		437 876

8 Write the greatest and the smallest number that can be formed from the number cards in each of the following.

greatest	
smallest	
greatest	
smallest	
greatest	
smallest	

9 Arrange the following numbers in an ascending order, then in a descending order.

а	654 321 ,	143 265 ,	142 365 ,	645 321
b	325 604 ,	302 564 ,	325 046 ,	325 064
С	515 115 ,	151 155 ,	551 115 ,	115 515

10	Complete in the same pattern.	
	a 710 654 , 720 654 , 730 654 , ,	
	b 80 000, 280 000, 480 000,,	
	c 100 568, 100 578, 100 588,, ,	
	d 220 300, 210 300, 200 300,,	
11	loin the carde with equal numbers	
	Join the cards with equal numbers.	
	710 710 1 710 + 70 000	
	710 + 71 000 710 + 710 000 71 710	
	10 + 700 + 710 000 10 + 700 + 71 000	
12	Underline the nearest number to 100 000 in each case.	
•	a 90 000 and 109 000 b 101 000 and 100 900	
	c 200 000 and 90 000	
13	Write suitable numbers inside the empty rectangles on the	
	number line according to thier places.	
400	0 000 500 000	
14	 a Write the greatest 6-digit number. b Write the greatest different C digit number. 	
	 Write the greatest different 6-digit number. Write the smallest 6 digit number. 	
	c Write the smallest 6-digit number.d Write the smallest different 6-digit number.	
15	a Write the greatest number different 6-digit number and	
	their sum is 15.	
	b Write the smallest different 6-digit number and their sum is	
	17.	
	c Write the greatest different 6-digit number and the sum of	
	its units and tens digits is 7.	
	d Write the smallest different 6-digit number and the sum of	
	its units and tens digits is 7.	
Shorou	Ik Press	

Lesson 2

Millions

Complete the following table to find the sum of: 999 999 + 1

Millions	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Units
	9	9	9	9	9	9 + 1

The sum is 1 000 000, and it is read as '**one million**' and can be represented on the abacus as in the figure above.

To read the number 49 136 527, we separate its digits as shown below

527 136, Millions Thousands

it is read from left to right as: 49 million, 136 thousand and 527

2 Write each of the following number in digits then put it in the corresponding table according to the place value of each digit.

(a) 17 million and 450 thousand and 46

Ten Millions	Millions	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Units

(b) 105 million and 11

Shorouk Press

Hundred Millions	Ten Millions	Millions	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Units

- **3** Write the following number in digits.
 - (a) One million , one hundred and fifty thousand and twenty seven.
 - (b) Twenty four million, thirty thousand and two hundred five.
 - (c) Five hundred million and six hundred thousand .
 - (d) Nine hundred thousand and eighty.

4 Write the following sum in digits.

a $\frac{1}{4}$ million pound.

b $\frac{1}{2}$ million pound.

c $\frac{3}{4}$ million pound.

5 Write the following sum in digits.

a 7435218 = 7 million + 435thousand + 218.

b 4691508 = ...million +thousand +

c 734216858 = ...million +thousand +

d 168730050 = ...million +thousand +

Join the two cards which express the same number

1 170 650	one million, one hundred and fifty thousand, six hundred and seventy
1 150 760	one million, one hundred and seventy thousand, six hundred and fifty
1 170 560	one million, one hundred and fifty thousand, seven hundred and sixty
1 150 670	one million , one hundred and seventy thousand, five hundred and sixty

8

Milliards (Billions)

Lesson 3

Complete the following table to find the sum of: 999 999 999 + 1

is read as '**milliard**', and can be represented on the abacus as in the figure opposite.

Shorouk Press

To read the number 6 408 192 357, we separate its digits as shown below

and it is read from left to right as: 6 Milliard, 408 million, 192 thousand and 357

Exercise 3

1	a b c	thousand and	million, I million, I million, I million,
2	7 000		nd and 900 00 900
3	mi 1 (b WI mi	7 000 000 + 6 000 + 900 /hich of the following numbers is the near nilliard? Represent the numbers on the nu 000 000 090 , 999 999 990 or 1 100 /hich of the following numbers is the near nilliard? 000 000 020 , 299 999 999 or 1 995	umber line. 0 000 000 rest to two

10 Mathematics for Primary Stage-Year 4

- **a** Find two 10-digit numbers with the difference between them is one milliard.
 - **b** Find two 10-digit numbers with the difference between them is one million.
 - **c** Find two 10-digit numbers with the difference between them is one thousand.

5 Write the following quantities of money in digits.

- **a** $\frac{1}{4}$ milliard pound
- **b** $\frac{1}{2}$ milliard pound
- **c** $\frac{3}{4}$ milliard pound

6 Express the following numbers in terms of million.

a 2 milliard .

4

- **b** $3\frac{1}{2}$ milliard.
- ${f c}$ 10 milliard .

Operations on Large Numbers

First: Adding and Subtracting Large Numbers

Example : A Factory produced fertilizer in year 450 thousand tons and in the next year produced 642 thousand tons .

(a) Find the sum of production in the two years .

(b) Find the amount of increase .

Lesson 4

the solution

a		450000	b	642000
	+	642000	_	450000
	=	1092000	=	192000

Exercise 4

Add, then use the calculator to check your answer.

а		8 752 013	b		2 560 000
	+	439 815		+	5 981 812
	=			=	
С		1 465 789	d		2 107305
	+	5 984 078		+	5 760119
	Ξ			=	

Find the difference in each of the following.

а		2 256 912	- I	b		6 444 382
		1 145 810			_	4 317 159
	=				=	
С		9 000 100				
	_	8 087 089				
	=					

d 9887000 -7115306 =

3 In the 2008-09 governomental budget and in the context of the governomental efforts to support basic commodities, 2 milliard pounds were allocated for that perpouse, 405 million pounds to maintain the prices of medicines and 750 million pounds to reduce the interest on housing loans. Find the total sum for the three items in the governomental expenditure.

Complete the solution:

=	pounds
+	750 000 000 pounds
	405 000 000 pounds
	2 000 000 000 pounds

support basic commodities maintain prices of medicine reduce interest of housing loans governomental expenditure

- 4 Circle the number nearest to the correct answer, without performing the usual addition operation.

5 Circle the number nearest to the correct answer, without performing the usual subtraction operation.

- 6 If the income from the advertisements during the African Football Cup of Nations 'Ghana 2008' for the Egyptian Channel Two was 21 million and eight hundred thousand pounds, for Nile Sports TV seven hundred thousand pounds and Youth and Sports Radio Channel five hundred and eight thousand pounds. Find the total income acheived by the three destinations from the advertisements.
 - If the budget allocated to support drinking water increased in two consecutive years from 270 250 000 pounds to 750 180 000 pounds. Find the amount of increase.
- 8 If the budget allocated to support medicine in two consecutive years increased from 380 million pounds to 405 million pounds to preserve the prices of medicine. Find the amount of the increase.
 - Find the number that if:
 - **a** subtracted from one milliard, the result is 758 209 312.
 - **b** added to it 7 812 159, the result will be ten million.
 - **c** 270 408 213 is subtracted from it, the result will be 18 200 999.

Second : Multiplying a Whole Number by Another a Multiplying by a 1-digit Number

Example: Find the product of: $357 \times 4 = \dots$

Drill 1:

Find the product of 9318 x 8 9318 8x (8+...+..+)x8=...+...+...=... + 80 +.....

Drill 2:

Find the product as the examples.

Example 1:		2 6 9 308	Example 2:		1 2 2 3 3 4 8 354 679
	×	8	\rangle	×	5
	=	74 464	=	=	41 773 395

С		3 605 421
	×	6
	=	

Use the calculator to check your answers.

Drill 3:

Mostafa bought two kinds of cloth, the price of one metre of the first kind is 97 pounds and the price of one metre of the second is 158 pounds. If Mostafa bought 4 metres of the first kind and 3 metres of the second, how many pounds did Mostafa pay?

Solution:

Price of first kind =	pounds
Price of second kind =	pounds
Mostafa paid =	. pounds

b Multiplying by a 2-digit Number

Drill 1:

Shorouk Press

Find the product as the examples.

Example 1: =	$27 \times 53 = 27 \times (3 + 50)$ $27 \times 3 + 27 \times 50$	Example 2: ×	5 3 2 7
=	81 + 1 350	3	371
=	1 431	+ 1 0	60
		= 1 4	3 1

(Notice that the product is the same even with different methods, use a calculator to check your answer.)

17

First Term

24 × 43 =	24 × (+ 40)		43
=	24 × 3 + ×	×	24
=	+		
=		+	
		=	

Drill 2:

Find the product of $4 \times 12 \times 25$ using more than one method.

First Method:

- $(4 \times 12) \times 25$ 48×25 = 48 × (5 +) =×....+....×..... = =
- + =

Drill 3:

A school took the opportunity of the Cairo International Book Fair and sent delegates to buy some books for the book library. Using the part of the invoice opposite, answer the following questions.

- What is the number of а books that cost 34 pounds each and what is their total price?
- What is the number of books b that cost 42 pounds each and what is their total price?
- What is the number of books С that cost 48 pounds each and what is their total price?

Second Method:

 $4 \times 12 \times (5 + 20)$

 $= 4 \times (\dots + \dots)$

 $= 4 \times \dots + 4 \times \dots$

 $4 \times (12 \times 5 + \dots \times \dots)$

..... + =

 $4 \times (12 \times 25)$

=

=

=

Find the total amount of money required from the school. d

With your teacher, discuss the benefits of holding the annual Cairo International Book Fair in Egypt and its annual timing.

18 Mathematics for Primary Stage-Year 4

Exercise 5

	a d	123 : 23 2	· × 15 78 × ·	49		b e	of the 2 78 475 x your	4 × 8 209 >	× 23		с f	5 467 × 84 3 785 × 17	
2	Com	nplet	e usir	ng a	suita	able	digit i	n eac	sh 🗌				
	а	. [4 5	C	b		-	35	С		[4 4 8	
	-	× = 4 ;	$\frac{7}{5 \Box 5}$	_		<u>×</u>	74	8		× =	1 .	75702040	
		- + ,] []]			+	74	0 0		+	ירור		
										= [

- 3 In one of their happy occasions, a family bought 18 kilograms of meet for LE 35 a kilogram and 16 litres of juice for PT 400 a litre. How many pounds did the family pay?
- A man wanted to build a house for his family. He bought 15 tons of building steel for LE 7 356 a ton and 48 tons of cement for LE 475 a ton. How much did the man pay?
- **5** Choose the number nearest to the correct answer, without performing the multiplication operation.

Shorouk Press

a $25 \times 977 \times 4 = \dots$ (9 000 , 10 000 , 110 000) **b** $40 \times 75 \times 50 = \dots$ (300 thousand , 200 thousand , 500 thousand) **c** $100 \times 99 \times 98 = \dots$ (900 thousand , 800 thousand , one million) **d** $125 \times 48 = \dots$ (five thousand , six thousand , seven thousand)

First Term

Third : Dividing a Whole Number by Another a Dividing by a 1-digit Number

Example: Divide 568 ÷ 2

Solution:

We know that 568 = 5 hundreds + 6 tens + 8 units = 4 hundreds + 16 tens + 8 units

Then, $568 \div 2 = (400 + 160 + 8) \div 2$ = $(400 \div 2) + (160 \div 2) + (8 \div 2)$ = 200 + 80 + 4 = 284

Drill 1:

Follow the steps of the following example to carry out the division operation: $459 \div 3$

Complete the solution:

459 = 4 hundreds + 5 tens + units = 3 hundreds + 15 tens + units

 $459 \div 3 = (300 + 150 + \dots) \div 3$ = (300 ÷ 3) + (..... ÷ 3) + (..... ÷) = + + =

Note: You can perform the previous steps mentally and write the quotient directly as shown in the following example.

Example: Divide $742 \div 2$ Solution: $742 \div 2 = 371$

Drill 2:

Write the quotient directly for each of the following division operations, then use the calculator to check your answer.

а	946 ÷ 2	b	486 ÷ 3
С	847 ÷ 7	d	655 ÷ 5

Dividend and Divisor

When dividing a number by another, the first number is called the **dividend** and the second is called the **divisor**.

For example, in the division operation 54 ÷ 9, 54 is the dividend and 9 is the divisor.

Quotient and Remainder

Example:	We have 17 pens that need to be distributed equally
	among 3 children. Find the greatest number of pens
	that can be given to every child.

Solution:Directly is 5 pens and 2 pens are left
because $5 \times 3 = 15$ and 17 - 15 = 2

In this example the **quotient** is 5 and the **remainder** is 2.

Then, $17 = 5 \times 3 + 2$

Complete the following table as the example.

The division operation	The dividend	The divisor	The quotient	The remainder	Relation between elements of division operation
78÷9	78	9	8	6	78 = 9 × 8 + 6
43 ÷ 2			21		
77 ÷ 5		5		2	
64 ÷ 4				0	

The dividend = The divisor x The quotient+ The remainder **b** Dividing a Whole Number by a 2-digit Number with remainder

Example: Find the quotient of the division withou remainder 3915 ÷ 15 Solution 3915 ÷ 15 = 261	15 3 9 1 5 <u>3 0</u> 9 1 <u>9 0</u> 1 5 1 5
Drill 3:	0 0
a 2 430 ÷ 18 =	18 2430

(check your answer by using the calculator or any other method.)

18 1 5

Shorouk Press

15

22 Mathematics for Primary Stage-Year 4

b

1815 ÷ 15 =

pe	mplete using a suitable sign <, >, or = in each without rforming the division operation.
•	2 538 ÷ 18 🔲 2 538 ÷ 37
b	720 ÷ 9 (72 ÷ 9) × 10
С	100 × (2448 ÷ 24) 24480 ÷ 24
	d the quotient of each of the following division operations,
wi a	hout using the calculator.

- **a** The number that if divided by 69, the quotient is 2358 .
- **b** The number that multiplied by 54, the product is 4158.

5

6

The daily production of a factory producing garments from one clothing item is 738 units and from a second item is 945 units. The box used for packaging the actory production for export can hold 18 units of the first kind or 15 units of the second. Find:

a The number of boxes consumed by the factory daily.

b The daily remainder from each kind produced.

Adel bought a flat in a housing tower for LE 168 940. He paid LE 100 000 as a down payment and the rest on 18 equal installments. Find the value of each installment.

Unit 1 Activities

Activity 1

Numerals and Numbers

- a Find the smallest number formed from 10 different digits.
- **b** Find the greatest number formed from 10 different digits.
- **c** Find the smallest even number formed from 10 different digits.
- **d** Find the greatest odd number formed from 10 different digits.
- Find the smallest number formed from 10 different digits and the sum of its units and tens digit numbers equals 3.
- f Find the greatest number formed from 10 different digits and the sum of its units and tens digit numbers equals 9.

Activity 2

Write three numbers each is formed from four different digits of 9, 6, 5, 4 and 0 such that: the first is nearest to 4 000

the first is nearest to 4 000 the second is nearest to 5 000 the third is nearest to 6 000

21 003 005

Activity 3

Shorouk Press

Notice and deduce

In the figure opposite, geometric shapes were drawn to express the number 21 003 005. Deduce the possible numerical value of each of the following shapes.

First Term

Shorouk Press

Geometry

- Relation Between Two Straight Lines
- Polygons
- The Triangle
- Applications
 - **Unit 2 Activities**
 - General Exercises on Unit 2

Relation between Two Straight Lines and Geometric Constructions

Drill 1:

Lesson 1

Use the set square, that you have in your geometric instruments, to draw a right angle, as shown in the figure opposite.

- **b** Complete the straight lines to get the figure opposite.
- **c** The two straight lines that you got are called **perpendicular** straight lines.
- d Measure the four angles resulted from the two straight lines at their point of intersection, you will find that the measure of each of them =°. (if your measure is 90°, then your drawing is correct)
- From all previous points, we can say that:

the two perpendicular straight lines make an angle with measure°.

Write the greatest number of examples of perpendicular lines that you can see in your environment.

- The edges of the right angle in a set-
- The vertical and horizontal edges of the door.

If the measure of the angle between two straight lines is not equal to 90° (acute or obtuse), then the two straight lines are **intersecting** and not perpendicular.

Drill 3:

 Draw two straight lines on two lines of your copybook, as shown in the figure below.

b Do you expect these straight lines to intersect if they were extended from both sides?

(yes 🗌 , no 🗌)

These two straight lines are called **parallel lines**.

Write the greatest number of examples of parallel lines that you can see arround you.

The lines of the copy-book. The two edges of the ruler.

Note:

You can draw two parallel lines using the two edges of your ruler, as shown in the figure opposite.

Drill 4:

Join each figure to the suitable statement, use your geometric instruments to be sure.

Two parallel lines

30

Two lines, intersecting and not perpendicular

Two lines, international and perpendic

Mathematics for Primary Stage-Year 4

Shorouk Press

Drill 5:

How to draw a perpendicular to a straight line from a point on it.

Notice and draw.

Drill 6:

How to draw a perpendicular to a straight line from a point outside it.

В

Notice and draw. In this case, we write $\overrightarrow{AB} \perp \overrightarrow{BC}$.
Drill 7:

How to draw a straight line parallel to a given straight line from a point outside it.

Notice and draw. In this case, we write AB // CD.

В

Exercise 1

Write the relation between each two straight lines under each figure.

.

2 Draw the perpendicular \overline{CE} on

the given straight line AB.

Figure 2

С

В

32

Then, complete.

First Term

What do you notice?

The relation between the number of sides of a polygon with respect to the number of its vertices and the number of its angles. **Notice that**, for any polygon:

Number of sides Number of vertices Number of angles

Drill 2:

Shorouk Press

Complete drawing the square ABCD, then answer the following (consider the unit of length = 1 cm).

a AB = BC = = = cm

b $m(\angle B) = m(\angle ...) = m(\angle ...) = m(\angle ...) = ...°$ *B Notice that* $m(\angle B)$ *can be written instead of measure* ($\angle B$) *for simplicity.*

Α

- **c** From all the above, it can be said that the square is a (pentagon, quadrilateral, hexagon) that has sides that are in length and angles that are in measure and the measure of each is° (check by drawing other squares on graph paper).
- **d** Using your geometric instruments, check that AC = BD and for other squares that you drew on graph paper, you will find that the diagonals of the square are always equal in length.
- **Notice**: In any quadrilateral, the **diagonal** is the line segment joining two non-consecutive vertices.

From the above, we deduce that the diagonals of the square are equal in length.

• Using the set-square, or the protractor, check that AC \perp BD and similarly for other squares that you drew on graph paper.

From the above, we deduce that the diagonals of the square are perpendicular.

f If M is the point of intersection of AC and BD, use the geometric instruments to check that MA = MB = MC = MD and similarly for other squares that you drew on graph paper.

From the above, we deduce that the diagonals of the square bisect each other.

Drill 3:

Complete drawing the rectangle ABCD, then answer the following (consider the unit of length = 1 cm).

a AB = = cm and BC = = cm

i.e. In the rectangle, every two opposite sides are in length.

b
$$m(\angle B) = m(\angle ...) = m(\angle ...) = m(\angle ...) = ...^{\circ}.$$

i.e. In the rectangle, all angles are in measure and the measure of each is°.

- **c** From all the above, it can be said that the rectangle is a that has sides and every two opposite sides are in length and angles that are in measure and the measure of each is° (check by drawing other rectangles on graph paper).
- **d** Use the geometric instruments to identify the relation between \overline{AC} and \overline{BD} and similarly for other rectangles that you drew on graph paper.

i.e. In the rectangle, the diagonals are in length.

 Using the set-square, or the protractor, check that AC and BD are not perpendicular and similarly for other rectangles (not squares) that you drew on graph paper.

i.e. The diagonals of the rectangle are not perpendicular.

If N is the point of intersection of \overrightarrow{AC} and \overrightarrow{BD} , use the geometric instruments to check that NA = NC and NB = ND and similarly for other rectangles that you drew on graph paper.

i.e. The diagonals of the rectangle bisect each other.

f

36

Shorouk Press

Drill 4:

Without using graph paper or squared paper, can you draw a square, given its side length?

Required: Draw the square ABCD whose side length 3 cm long.

D

3 cm

С

В

Notice and draw.

Drill 5:

Notice and draw.

Drill 6:

Notice, then answer the following questions (use your geometric instruments).

Shorouk Press

esson 3 The Triangle

Drill 1:

Notice the figure opposite, then complete.

- **a** The sides of the triangle ABC are AB, and
- **b** The vertices of the triangle are A, ... and ...
- **c** The angles of the triangle ABC are $\angle A$, $\angle \dots$ and $\angle \dots$
- **d** The triangle is (a polygon , an open curve), it has ... sides and ... angles.

Identifying the Type of the Triangle According to the Measure of its Angles

Drill 2: Notice the following triangles, then complete. Α Х B С F Figure 2 Figure 1 Figure 3 In $\triangle ABC$, $\angle \dots$ is a right angle, for that the triangle is called а a right-angled triangle. Question: Can you draw a triangle with two right angles? In ΔDEF , its three angles are, for that the triangle is b called an acute-angled triangle.

c In ΔXYZ, ∠..... is an obtuse angle, for that the triangle is called an obtuse-angled triangle.

Question: Can you draw a triangle with two obtuse angles?

40

Α

B

Identifying the Type of the Triangle According to the Length of its Sides

 c In figure 3, use the compasses to check that the three sides of the triangle are different in length. This triangle is called a scalene triangle.

Drill 4:

Notice the following triangles, then complete.

Shorouk Press

- aWhat is the type of the ΔABC according to its:
side lengths?angles measures?
- b What is the type of the ΔXYZ according to its: side lengths? angles measures?

First Term

Drawing a Triangle Given the Measure of Two Angles and the Length of One Side

Drill 6:

Draw \triangle ABC in which BC = 4 cm, m(\angle B) = 30° and m(\angle C) = 80°.

Notice and draw.

The Sum of Measures of the Angles of the Triangle

Drill 7:

- **a** Draw any triangle on a piece of cardboard paper.
- **b** Colour the angles of the triangle at its vertices in red, green and yellow as shown in the figure opposite.
- **c** Use the scissors to cut the three angles and fix them on a piece of paper as shown in the figure.

Notice: The three angles together formed a straight angle and we know that the measure of the straight angle is 180°. Then, we deduce that:

The sum of measures of the interior angles of any triangle = 180°

Drill 8:

Shorouk Press

Draw the triangle ABC in which $\angle B$ is a right angle, m($\angle C$) = 60° and BC = 4 cm. Measure $\angle A$, then check that the sum of measures of angles of a triangle is 180°.

Drill 9:

Draw ΔXYZ in which = XY = 7cm, m($\angle X$) = 100°, and m($\angle Y$) = 50°. Measure ($\angle Z$), then answer:

- **a** What is the sum of the measures of angles of ΔXYZ?°
- **b** What is the type of the triangle XYZ according to the measures of its angles?

Drill 10:

Use the two set-squares in your geometric instruments box to draw two triangles as shown in the figure opposite, then answer:

a Measure the angles of each triangle, then complete.

- The sum of the measures of angles of ΔABC equals
 + + =
- The sum of the measures of angles of ΔXYZ equals
 + + =
- **b** What is the type of ΔABC according to its side lengths? (scalene, equilateral, isosceles)

Exercies 3

- Put (✓) for the correct statement and (X) for the incorrect one and correct the wrong statement.
 - **a** There can be two right angles in one triangle. (
 - **b** There can be three acute angles in one triangle.
 - **c** There can be a right angle and an obtuse angle in one triangle. (
 - **d** The measure of the straight angle = the sum of the measures of the angles of a triangle.

- **2** Draw Δ LMN in which MN = 6 cm, m(\angle M) = 40° and m(\angle N) = 70°.
 - **a** Without using the protractor, find m ($\angle L$).
 - **b** What is the type of the triangle according to the measures of its angles?
 - **c** What is the type of the triangle according to its side lengths? (measure the lengths of the sides)
- **3** Draw ΔXYZ in which XY = 5 cm, m($\angle X$) = m($\angle Y$) = 45°.
 - **a** Without using the protractor find $m(\angle Z)$.
 - **b** What is the type of the triangle according to the measures of its angles?
 - **c** What is the type of the triangle according to its side lengths? (measure the lengths of its sides)
- **4** Draw \triangle ABC in which AC = 7 cm, m(\angle A) = 45°, and m(\angle C) = 75°.
 - a Calculate, mentally, m(∠B), then check your answer using the protractor.
 - **b** What is the type of the triangle according to the measures of its angles?
 - **c** What is the type of the triangle according to its side lengths? (measure the lengths of the sides)
- **5** Draw ΔDEF in which DE = 5 cm, EF = 6 cm and m($\angle B$) = 80°.
 - a What is the sum of the measures of the two angles ∠FDE and ∠DFE?
 - **b** use the protractor to find m(\angle DFE).

Shorouk Press

- **c** Calculate m(\angle FDE). (without measuring)
- **d** What is the type of ΔDEF according to the measures of its angles and its side lengths?

Applications

Question How to make a solid using cardboard paper?

Drill 1:

_esson 4

You can make a cube-shaped box without a lid as follows.

- **a** Draw a square of (choose a proper side length, for example 30 cm, on cardboard paper.
- **b** Divide the large square into 9 small squares, as in the figure.
- **c** Use the scissors to cut the four blue squares in the four corners of your drawing.
- **d** Fold the remaining figure on the dotted lines
- e Glue the edges, to get the solid opposite (a cube-shaped box without a lid).

Drill 2:

You can make a cuboid-shaped box with a lid by drawing a figure with suitable dimensions (as in the figure opposite) on cardboard paper, fold on the dotted lines then glue the edges to get the resulted solid as in the figure below.

Drill 3:

Shorouk Press

You can make a pyramid with square-shaped base by drawing a figure with suitable dimensions as in the figure on cardboard paper, fold on the dotted lines then glue the edges and you will get the solid opposite.

Exercies 4

- **1 a** On the lattice, draw the square ABCD whose side length is 4 cm.
 - **b** Draw AC and BD.
 - **c** Into how many triangles was the square ABCD divided?
 - **d** Are these triangles congruent?
 - Divide each of these triangles into two congruent triangles.
 - **f** Colour the resulted triangles in two different colours consecutively to get an ornamental nice figure.
 - **g** With the aid of your teacher, use the 'Paint' program in your computer to do the final figure.
- 2 The figure opposite represents a rectangular-shaped hall. Its two dimensions are 6 m and 8 m. Two types of tiles were used to tile the hall as shown in the figure. Complete tiling in the same pattern, then answer the questions.
 - **a** How many squared tiles are needed?
 - **b** How many rectangular tiles are needed?
- **3** A square-shaped room of side length 4 metres. On squared paper, design a pattern of your choice where you use 2 or 3 different kinds of tiles to cover its floor.

Unit 2 Activities

Activity 1

In the multimedia lab in your school and with the aid of your teacher, use the computer to draw the following geometric figures.

d

a Rectangle

b Square

c Triangle

Activity 2

In the figure opposite, three straight lines intersect at three points.

- What is the greatest number of intersection points can you get using four straight lines?
- b What is the greatest number of intersection points can you get using six straight lines?

Other ornamental figures

- **c** What is the greatest number of intersection points can you get using six straight lines, if four of them are parallel?
- **d** What is the greatest number of intersection points can you get using ten straight lines, if seven of them are parallel?

General Exercises on Unit 2

- 1 Put (✓) for the correct statement and (✗) for the incorrect one and correct the wrong statement.
 - **a** If ABC is a triangle in which $m(\angle B) = 98^{\circ}$, then it is possible to be a right-angled triangle.
 - **b** If XYZ is a triangle in which $m(\angle X) = 100^{\circ}$ and $m(\angle Y) = 58^{\circ}$, then $m(\angle Z) = 30^{\circ}$.
 - **c** The rhombus is a quadrilateral in which all sides are equal in length.
 - **d** It is possible to draw a triangle given the measures of each of its angles. ()
- **2** Join each figure to the suitable name.

)

Parallelogram Rhombus Rectangle Square

Trapezium

- **3** Write only one difference between each of the following.
 - **a** The square and the rectangle.
 - **b** The triangle and the circle.
 - **c** The rhombus and the parallelogram.
 - **d** The square and the cube.

- Draw The triangle ABC in which AB = 3 cm, BC = 4 cm and 4 $m(\angle B) = 90^{\circ}$. Measure the length of AC, then complete the rectangle ABCD and answer. Calculate the perimeter of each of the rectangle ABCD and а the triangle ABC. What is the type of the triangle ABC according to: b
 - - its side lengths. the measure of its angles. i. ii
- In the opposite figure ABCD is a parallelogram complete 5

Multiples, Factors and Divisibility

Multiples
Divisibility
Factors and Prime Numbers
Common Factors (H.C.F.)
Common Multiples (L.C.M.)
Unit 3 Activities
General Exercises on Unit 3

_esson 1

Multiples

Drill 1:

a Complete the following table.

× 2	0	1	2	3	4	5	6	7	8	9	10
	0	2	4								

Dopposite is a set of consecutive numbers arranged in a table.
 Complete colouring using the same pattern.

0	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20

c Complete.

The numbers written in the coloured squares are 0, 2, 4, and they are the results of multiplication by

These numbers are called the multiples of the number 2

- **Note: 1** The units digit of each of these numbers is 0, 2, 4, 6 or 8.
 - **2** Multiples of 2 are the even numbers that you studied before.

Generally:

52

If a number is multiplied by 2, then the product is a multiple of the number 2

Example: $17 \times 2 = 34$, hence 34 is a multiple of the number 2

Shorouk Press

Drill 2:

a Complete the following table.

 Opposite is a set of consecutive numbers arranged in a table.
 Complete colouring using the same pattern.

0	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27

c Complete.

The numbers written in the coloured squares are 0, 3, 6, and they are the results of multiplication by

These numbers are called the multiples of the number 3

Generally: If a number is multiplied by 3, then the product is a multiple of the number 3

Example: $21 \times 3 = 63$, hence 63 is a multiple of the number 3

d Complete.

The number 30 is a multiple of 3 because $30 = \dots \times 3$ The number 24 is a multiple of \dots because $24 = \dots \times 3$

Drill 3:

a Complete the following table.

Dopposite is a set of consecutive numbers arranged in a table.
 Complete colouring using the same pattern.

0	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31	32	33	34

c Complete.

The numbers written in the coloured squares are 0, 5, 10, and they are the results of multiplication by

These numbers are called the multiples of the number 5

Generally:

If a number is multiplied by 5, then the product is a multiple of the number 5

Example: $32 \times 5 = 160$, hence 160 is a multiple of the number 5

Note: For the multiples of the number 5, the units digit of each of these numbers is 0 or 5

d Complete.

54

 $17 \times 5 = \dots$, then the number \dots is a multiple of the number 5 $42 \times 5 = \dots$, then the number \dots is a multiple of the number 5

Drill 4:

The table below contains numbers from 0 to 49.

a Put a yellow point in the cells having a multiple of the number 2.Put a red point in the cells having a multiple of the number 3.Put a blue point in the cells having a multiple of the number 5.

- Complete. The numbers in the cells having yellow and red points are
 each of these numbers is a multiple of and at the same time and is also considered a multiple of
- Complete. The numbers in the cells having yellow points only are
 each of these numbers is a multiple of and it is not a

multiple of or

- e Complete. The numbers in the cells having blue points only are each of these numbers is a multiple of and is not a multiple of or

Exercise 1

- 1 Underline each number of the following that is a multiple of the number 2: 17, 5, 26, 4, 13, 2, 20
- 2 Underline each number of the following that is a multiple of the number 3:4, 15, 21, 3, 10, 12, 22
- **3** Underline each number of the following that is a multiple of the number 5: 23, 15, 40, 51, 5, 8, 20
- **4** Write all the multiples of the number 3 between 10 and 20.
- **5** Write all the multiples of the number 5 between 14 and 44.
- **6** Write all the multiples of the number 2 that are less than 10.
- **7** Write all the multiples of the number 3 that are less than 20.
- 8 Write all the multiples of the number 5 that are less than 30.
- 9 Complete.
 12 = 3 × hence the number 12 is a multiple of and also considered a multiple of
 28 = 7 × hence the number 28 is a multiple of and also considered a multiple of
 45 = 5 × hence the number 45 is a multiple of and also considered a multiple of
- **10** Write the multiples of the two numbers 2 and 5 that are less than 50.
- **11** Write the multiples of the two numbers 2 and 3 that are less than 30.

Mathematics for Primary Stage-Year 4

12 Join 2	n each number to its multiples 3 5	З.
7,	8 , 11 , 12 , 15 , 21 , 30	
b	numbers 2 and 4 and also a	20 that is a multiple of the two
Exa a c	ample: 50 57 60 <	ne number 10 as the example. b < 11 < d < 76 < F < 95 <
Exa a c	< 32 <	ne number 5 as the example. b < 8 < d < 66 < F < 94 <
num	ne number of pupils in a class nbers 2 and 3 that is included ny pupils are there in the clas	between 30 and 40. How
one	alarm clock rings regularly everings every 3 hours. If the twock, at what time will they rin	0 0

 $17 \times 5 = \dots$, then the number \dots is a multiple of the number 5 $42 \times 5 = \dots$, then the number \dots is a multiple of the number 5

_esson 2 Divisibility

First: The Meaning of Divisibility

Alaa and Yasmine baught a bag of sweets to distribute it equally among them. Complete.

- If the bag contains 5 pieces of sweets, then every one will take 2 pieces, and piece will be left.
- If the bag contains 6 pieces of sweets, then every one will take pieces, and nothing will be left in the bag.
- i.e. When dividing $5 \div 2$, the quotient is 2 and the remainder is 1 When dividing $6 \div 2$, the quotient is 3 and the remainder is zero

It is said that: in the first case, the number 5 is not divisible by 2. in the second case, the number 6 is divisible by 2.

Generally: The number that is divisibe by another, if the remainder of the division operation is zero.

Drill 1:

Complete.

- **a** In dividing 7 ÷ 3, the quotient is and the remainder is, hence 7 is by 3.
- **b** In dividing 20 ÷ 4, the quotient is and the remainder is, hence 20 is by 4.

Second: Multiples and divisibilty

We know that 35 is a multiple of the number 5, because if we multilpy 7 by 5 the product will be $35 (5 \times 7 = 35)$. To express this meaning in another way that 35 is considered a multiple of the number 5 because if we divide $35 \div 5$ the quotient will be a whole number 7 and the remainder will be zero. So, it is said that multiples of the number 5 are divisible by 5 and multiples of the number 7 are divisible by 7.

Generally: All multiples of a number are divisible by this number.

Drill 2:

Complete as in the example.

Example: $3 \times 4 = 12$, then 12 is a multiple of each of the two numbers 3 and 4 and 12 is divisible by each of 3 and 4.

- **a** 7 × 9 =, then is the multiple of each of and and
- **b** $5 \times 11 = \dots$, then \dots is the multiple of each of \dots and \dots and \dots
- **c** 3 × 7 =, then is the multiple of each of and and

Drill 3:

Complete as in the example.

- Example: 15 is not divisible by 2 because when we divide 15 ÷ 2, the remainder is 1, hence 15 is not a multiple of the number 2.
- **a** 35 is not divisible by 3 because when we divide 35 ÷, the remainder is, hence 35 is not a multiple of
- **b** 28 is not divisible by 8 because when we divide ÷ 8, the remainder is, hence 28 is of 8.
- **c** 72 is by 9 because when we divide ÷, the remainder is, hence 72 is of 9.

Generally:

- **1** A number is divisible by 2, if its units digit is 0 or any other even number.
- **2** A number is divisible by 5, if its units digit is 0 or 5.
- **3** A number is divisible by 3, if the sum of its digits is divisible by 3.

Exercise 2

1 Complete.

- **a** 35 ÷ 6 = and the remainder is
- **b** A number is divisible by 2 if its units digit is
- **c** A number is divisible by 5 if its units digit is
- **d** 34 ÷ 3 = and the remainder is, then 34 is by 3.
- **2** Circle the numbers that are divisible by 2. 15, 18, 102, 5224, 6143
- **3** Circle the numbers that are divisible by 5. 125, 3123, 1460, 2327, 4265
- **4** Circle the numbers that are divisible by 3. 33, 1256, 73 410, 1278
- **5** Write three numbers that are divisible by 2 and 5.
- **6** Write three numbers that are divisible by 3 and 5.
- **7** Write three numbers that are divisible by 2, 3 and 5.

Factors and Prime Numbers

First: Factors of the Number

We know that we can write a number in the form of the product of two, or more, numbers.

Lesson 3

61

First Term

- With respect to the number 6, we can write it as:
 6 = 1 × 6 or 6 = 2 × 3, then the numbers 1, 2, 3 and 6 are called the factors of the number 6.
- With respect to the number 35, we can write it as:
 35 = 1 × 35 or 35 = 5 × 7, then the numbers 1, 5, 7 and 35 are called the factors of the number 35.

Complete. With respect to the number 12, we can write it as: $12 = 1 \times \dots, 12 = 2 \times \dots$ or $12 = 3 \times \dots$, then the factors of the number 12 are

Note: The process of writing the number in the form of the product of two or more numbers is called **factorization** of the number into **factors**.

Drill 1:

Complete factorizing each of the following numbers into factors and write the factors of each.

- a 18 = 1 × ... = 2 × ... = 3 × ..., then the factors of the number
 18 are
- **b** $42 = 1 \times \dots = 2 \times \dots = 3 \times \dots = 6 \times \dots$, then the factors of the number 42 are
- **c** $24 = 1 \times \dots = 2 \times \dots = 3 \times \dots = 4 \times \dots$, then the factors of the number 24 are
- **d** $120 = 1 \times \dots = 2 \times \dots = 3 \times \dots = 4 \times \dots = 5 \times \dots = 10 \times \dots$, then the factors of the number 120 are

Shorouk Press

Second: Prime Numbers

Drill 2:

Find the factors of each of the numbers: 4, 7, 10, 11, 15, 17. Complete the solution.

a $4 = 1 \times ... = 2 \times ...$, then the factors of the number 4 are

- **b** $7 = 1 \times ...$, then the factors of the number 7 are
- **c** $10 = 1 \times ... = 2 \times ...$, then the factors of the number 10 are ...
- **d** $11 = 1 \times \dots$, then the factors of the number 11 are \dots
- **e** $15 = 1 \times ... = 3 \times ...$, then the factors of the number 15 are ...
- **f** $17 = 1 \times \dots$, then the factors of the number 17 are \dots

From the above, the numbers 4, 10 and 15 have more than two factors while the numbers 7, 11 and 17 have only two factors (one and the number) and they are called **Prime numbers**.

Generally:

The number that has only two factors is called a prime number.

i.e. The prime number is divisible by itself and the whole one.

Note: The whole one is not a prime number.

Drill 3:

Discuss, which of the following numbers is considered a prime number and which is not: 27, 5, 22, 13 and 19, then complete.

a With respect to 27: It is possible to write $27 = 1 \times \dots = 3 \times \dots$, then 27 has other factors than 1 and 27. So, it is not considered a

b	With respect to the number 5: It is impossible to write it in the form of the product of two numbers except in the form of $5 = 1 \times$ or $5 = 5 \times$, then the factors of the number 5 are only and So, it is a
С	With respect to the number 22: It is possible to write $22 = 1 \times \dots = 2 \times \dots$, then the number 22 is a because it has
d	With respect to the number 13: It is impossible to find two numbers, the product of which is 13 except and, then
е	With respect to 19:

Third: Factorizing the Number (non-prime) to its Prime Factors We saw that factorizing a number to its prime factors, means writing this number in the form of a product of two or more numbers.

Example: Factorize the number 315 to its prime Factors .

Solution

we divide the number by the prime	315	3
numbers 2,3,5,7, according	105	3
to the divisibility of this number by	35	
these prime numbers .	7	7
	1	

 $315 = 3 \times 3 \times 5 \times 7$

Drill 4:

Shorouk Press

Factorize each of the following numbers to its prime factors. 15 , 12 , 9 , 26 and 36 $\,$

Exercise 2

1 Find the factors of each of the following numbers. 14, 38, 26, 75

2 Complete.

- **a** A prime number has two factors that are and
- **b** 16 = 1 × = 2 × = 4 ×, then the factors of the number 16 are
- **c** 1 is not considered a prime number because
- **d** 3 is considered a factor of the numbers and
- **3** State which of the following is a prime number. 2, 7, 25, 29, 34, 57
- Factorise each of the following numbers to its prime factors.
 12, 18, 23, 36
- **5** Find the number whose prime numbers are 2, 2 and 3.
- **6** Find the number whose prime numbers are 2, 5 and 7.

Common Factors for Two or more Numbers and Highest Common Factor (H.C.F.)

Drill 1:

Complete.

Factors of the number 30 are	1	,	2,	3,	5,	6,	10 , ,	
Factors of the number 40 are	1	,	2,	4,	5,	8,	10 , ,	
Numbers that are factors of the number 30 and at the same time								
factors of the number 40 are 1,	factors of the number 40 are 1,,,							

Lesson 4

65

First Term

These numbers are called **common factors** for the two numbers. The highest of these common factors is

So, it is said that 10 is the **highest common factor** for the two numbers 30 and 40 and is symbolized as **H.C.F.**

Generally:

The highest common factor (H.C.F.) for a set of numbers is the highest number that all the numbers are divisible by.

Example (1) : Find the H. C. F for the numbers 30 , 40 Solution

30	2	40	2	
30 15	3	20	2	
5	5	10	2	$30 = 2 \times 3 \times 5$
1		5	5	$40 = 2 \times \times 5 \times 2 \times 2$
	I	1		H.C.F. = $2 \times 5 = 10$

Drill 2: Find the H.C.F. for the numbers 9, 12 and 15.

Complete the solution.

9 = 3 × 12 = 3 × 15 = 3 × H.C.F. for the numbers 9, 12 and 15 =

Shorouk Press

Exercise 4

- **1** Find three common factors for 8 and 16.
- **2** Find three common factors for 12 and 28.
- **3** Facorize each of the two numbers 6 and 15 to their prime factors, then find the H.C.F. for them.
- **4** Complete the following table as the example.

	Division operation	Quotient	Remainder	Divisibility
Example	65 ÷ 4	16	1	65 is not divisible by 4
	57 ÷ 7			
	21 ÷ 3			
	75 ÷ 9			

- **5 a** Find all the factors for each of the numbers 16 and 20.
 - **b** Find the common factors for the numbers 16 and 20.
 - **c** Find the H.C.F. for the numbers 16 and 20.
- **6** Find the H.C.F. for each of the following sets of numbers.
 - **a** 20 and 30

- **b** 35 and 49
- **c** 12 and 16
- **d** 24, 40 and 56
- **e** 15, 18 and 21
- **f** 6, 7 and 8
- 7 If the H.C.F. for two numbers is 7, then what are the two numbers? Give three possible answers.

Common Multiples for Two or more Numbers and Lowest Common Multiples (L.C.M.)

We know that each of the numbers 6, 12, 18, ... is a **multiple** for both numbers 2 and 3. So, it is said that each of these numbers is a **common multiple** for the numbers 2 and 3.

Similarly, the number 15 is a multiple for both numbers 3 and 5. So, it is a common multiple for the numbers 3 and 5. Also 30, 45, 60, ... are common multiples for the numbers 3 and 5.

Drill 1:

- Complete till you reach the number 70.
 The multiples of the number 5 (up to 70) are 0, 5,, 70
 The multiples of the number 7 (up to 70) are 0, 7,, 70
- **b** Underline the common multiples for the numbers 5 and 7.
- **c** Are all these common multiples also multiples for the product of 5×7 (i.e. multiples for the number 35)?

Drill 2:

- a Complete till you reach the number 24.
 The multiples of the number 2 (up to 24) are 0, 2,, 24
 The multiples of the number 4 (up to 24) are 0, 4,, 24
- **b** Underline the common multiples for the numbers 2 and 4.
- **c** Are all these common multiples also multiples for the product of 2×4 (i.e. multiples for the number 8)?

Drill 3:

- a Complete till you reach the number 60.
 The multiples of the number 2 (up to 60) are 0, 2,
 The multiples of the number 3 (up to 60) are 0, 3,
 The multiples of the number 5 (up to 60) are 0, 5,
- **b** Underline the common multiples for the numbers 2, 3 and 5.

First Term

Lesson 5
c What is the smallest common multiple (other than zero) for the numbers 2, 3 and 5? (This number is called the lowest common multiple for the numbers 2, 3 and 5)

The lowest common multiple for a set of numbers is the smallest number (other than zero) that is divisible by each of these numbers, then it is a multiple for each of these numbers individually and is abbriviated as L.C.M.

Example: Find the L.C.M. for 4, 12 and 15.
Complete the solution.
Multiples for the number 4 are 0, 4, 8,
Multiples for the number 12 are 0, 12,
Multiples for the number 15 are 0, 15,
The lowest common multiple for the numbers 4, 12 and 15 (other than zero) is
Then, the L.C.M. for the numbers 4, 12 and 15 is

Another solution using factorization to the prime factors.

	4 =	2	\times	2						
	12 =	2	×	2	\times	3				
	15 =					3	×	5	_	
		•		V		V		•	-	
L.C.M.		2	×	2	×	3	×	5	=	60

Then, L.C.M. for the numbers 4, 12 and 15 is 60.

- **1** Write three multiples for the number 7.
- **2** Write three common multiples for the numbers 6 and 10.
- **3** Write three common multiples for the numbers 2, 7 and 10.
- **4** Find all the common multiples between 50 and 100 for the numbers:
 - **a** 3 and 5 **b** 4 and 6 **c** 2, 7 and 8
- **5 a** Write the multiples for the number 3 up to 63.
 - **b** Write the multiples for the number 7 up to 63.
 - **c** Write all the common multiples for the numbers 3 and 7 up to 63.
 - **d** Write the L.C.M. for the numbers 3 and 7.
- **6 a** Write the multiples for the number 2 up to 60.
 - **b** Write the multiples for the number 3 up to 30.
 - **c** Write the multiples for the number 5 up to 30.
 - **d** Write all the common multiples for the numbers 2, 3 and 5 up to 30.
 - e Write the L.C.M. for the numbers 2, 3 and 5.

- 7 a Factorize each of the numbers 8 and 18 to its prime factors.b Find the L.C.M. for the numbers 8 and 18.
- 8 Find the L.C.M. for each of the following sets of numbers.
 a 2, 3 and 4 b 3, 4 and 5 c 2, 6 and 7 d 3, 6 and 7
- **9** If you know that the lowest common multiple for two numbers is 24, what are the two numbers (give more than one answer).
- **10** Find the L.C.M. for the numbers $(5 \times 7 \times 13)$ and $(2 \times 5 \times 11)$.
- **11** Find the L.C.M. for the numbers $(2 \times 3 \times 5 \times 7)$ and $(3 \times 3 \times 7)$.

Unit 3 Activities

Activity 1

Find: **a** the common multiple of all numbers.

b the common factor of all numbers.

Activity 2

First: Complete the following table.

		•									
1	2	3	4	5	6	7	8	9	10	11	12
2	4	6	8	10							
3	6	9	12								
4	8	12									
5	10										
6											
7											
8											
9											
10											
11											
12											

Second: Using the table above, complete the following.

- **a** The number 108 is divisible by and
- **b** The number is divisible by 11 and 12.
- **c** The number 54 is considered a common multiple for the two numbers and
- **d** Multiples of the number 12 that are less than 150 are
- e The number 11 is considered one of the factors of the numbers

Shorouk Press

General Exercises on Unit 3

Join each number from group **a** with the suitable phrase from group **b**.

2 Put (✔) for the correct statement and (✗) for the incorrect one and correct the wrong statement.

а	The number 63 is divisible by 6.	()
b	The number 17 is a prime number.	()
С	0 and 7 are multiples of the number 7.	Ì)
d	The H.C.F. for the two numbers 8 and 24 is 4.	Ì)
е	The L.C.M. for the two numbers 8 and 24 is 8.	Ì	ý

3 Complete.

- **a** The multiples of the number 6 which are between 20 and 40 are
- **b** The factors of the number 35 are

4 Find:

- **a** the H.C.F. for the numbers 24 and 36.
- **b** the L.C.M. for the numbers 7 and 9.

Measurement

- The Length
- The Area

S

2

Unit 4 Activities

SI: 2 3

General Exercises on Unit 4

Lesson 1 The Length

You know that the centimetre (cm) and metre (m) are units used for measuring length.

Figure number			Sum of side lengths (Perimeter)
1	Square	1 cm	$1 + 1 + 1 + 1 = 1 \times 4 = 4$ cm
2		cm	\dots + \dots + \dots + \dots = \dots × \dots = \dots cm
3		cm	\dots + \dots + \dots + \dots = \dots × \dots = \dots cm
4		cm	\dots + \dots + \dots + \dots = \dots × \dots = \dots cm

From the previous we deduce that:

perimeter of a square = side length ×

Drill 7:

Use the relation between the perimeter of the square and its side length to complete.

- **a** Perimeter of a square of side length 9 cm = $\dots \times \dots$ = $\dots \times$ cm
- Perimeter of a square-shaped piece of land of side length
 10 m = =
- Perimeter of a square-shaped piece of paper of side length
 2 dm = = dm = cm

Drill 8:

Notice the following rectangles, then complete (consider the unit of length = 1 cm).

Rectangle number	Length	Width	Sum of side lengths (Perimeter)
1	5	4	$5 + 5 + 4 + 4 = 5 \times 2 + 4 \times 2 = (5 + 4) \times 2 = 18$ cm
2	4		$4 + 4 + \dots + \dots = 4 \times 2 + \dots \times 2 = (4 + \dots) \times 2 = \dots$ cm
3		2	$\dots + \dots + 2 + 2 = \dots \times 2 + 2 \times 2 = (\dots + 2) \times 2 = \dots$ cm
4			$\dots + \dots + \dots + \dots = \dots \times 2 + \dots \times 2 = (\dots + \dots) \times 2 = \dots$ cm

From the previous we deduce that:

The perimeter of a rectangle = $(\dots + width) \times \dots$

Drill 9:

Complete.

- a The perimeter of a rectangle whose length is 7 cm and width 3 cm = (..... +) × = cm
- **b** The perimeter of a rectangle whose dimensions 6 m and 3 m = (..... +) × = metre
- Example: Calculate the perimeter of a rectangle of dimensions 3 dm and 50 cm.
- Solution: 3 dm = 30 cm, then the perimeter of the rectangle equals $(30 +) \times =$ cm
- **Note**: To calculate the perimeter of a figure whose dimensions are in different units, you have to make the dimensions in the same unit.

Drill 10:

The kilometre (km) = 1000 meters	(m)	
----------------------------------	-----	--

Co	mplete. a	3 km = m	b	9000 m = km
С	8 km =	m = dm	d	4 km = m = cm

Drill 11:

A rectangular-shaped piece of land with dimensions 3 km and 2 km, it is needed to be surrounded by a wire fence. The cost of one metre of wire fence equals 8 pounds what is the total cost of the fence? Solution:

Perimeter of land= $(... + ...) \times 2 = km = m$ Cost of fence= $..... \times = pounds$

1	 Put (✓) for the correct statement and (X) for the incorrect one and correct the wrong statement. a The perimeter of the square = side length + 4. () b The perimeter of a rectangle = (length + width) + 2. () c The decimetre > the metre. () d The millimetre < the centimetre. () e If the dimensions of a rectangle are 3 cm and 5 cm, then half its perimeter equals 8 cm. ()
2	Arrange the units of length in ascending order. centimetre, decimetre, millimetre, kilometre, metre
3	 Choose the suitable unit to measure each of the following. a The distance between Cairo and Alexandria. (mm, dm, km) b The height of a building. (mm, dm, m) c The height of a man. (km, cm, mm) d The length of an ant. (km, mm, m)
4	Choose the closest answer. a The length of a taxi = (2 km, 20 m, 200 cm) b The length of my pen = ($\frac{1}{2}$ km, 15 dm, 15 cm) c The height of my brother = (3 m, 160 cm, 160 mm) d My mother bought a piece of cloth of length = (3 km, 3 m, 3 cm, 3 mm) e In my house, there is a squared room of side length = (5 m, 5 cm, 5 mm, 5 km)
5	 Calculate the perimeter of each of the following. a A square of side length 3 dm. b A rectangle whose length is 12 cm and width 5 cm. c A rectangle whose length is 3 dm and width 25 cm. d A rectangle whose dimensions are 2 m and 150 cm.
78	Mathematics for Primary Stage-Year 4 Shorouk Press

		_						
	6 Calculate, in centimetres, the side length of a square whose perimeter is 4 dm.							
	 7 The perimeter of a rectangle is 86 cm, and its length is 23 cm. Find its width: a in centimetres. b indecimetres. 							
	 8 The sum of the perimeters of two squares is 100 dm. If the side length of one of them is 8 dm, find the side length of the other square. a in decimetres b in centimetres 							
	9 It is wanted to make a frame to a rectangle-shaped picture whose dimensions are 400 cm and 500 cm. If the cost of one metre of the frame is 3 pounds, what is the cost of the frame?							
	10 The width of a rectangle-shaped piece of land equals $\frac{1}{3}$ of its length. Calculate its perimeter if its width equals 15 metres.							
	 11 Calculate the perimeter of each of the following. a A rectangle-shaped room whose dimensions are 4 m and 3 m. b A rectangle-shaped picture frame whose dimensions are 5 dm and 20 cm. c A rectangle-shaped bed sheet whose dimensions are 2 m and 150 cm. d A rectangle-shaped room door whose length is 18 dm, and 							
	width 1 metre. • A square-shaped window of side length 15 dm.	r						
	12 Notice the drawn figure, imagine that you cut the red part, calculate the perimeter of the remaining part (consider that the side length of the small square is 1m).							
	13 The figure represents a rectangular piece of land, its dimensions are 70 m and 50 m and a squared playground, its side is 30 m long is constructed inside it. If the shaded part is surrounded by a wire from inside and outside, find the length of the wire in each case.							
_								

Shorouk Press

First Term

The Area

Preface

Areas of the figures like squares, rectangles, triangles, ... etc, are measured by units of area, In this lesson, you will know some of these units.

Drill 1:

Lesson 2

Notice the following figures, each figure is divided into equal parts, **units of area**.

Complete the following table:

Figure number	Number of equal parts (area of figure)
1	······ 🔺
2	
3	

Question Can you determine, which of the previous figures is greater in area? why?

To compare the areas of some figures, you have to calculate the area of each using the same unit. So, we are in need of standard units, One of these units is the **square centimetre** and its symbol is **cm**². Then, what is the square centimetre?

Drill 2:

Notice the shaded figure opposite to recognize the square centimetre **cm**², then complete.

cm² is the area of a square of side length

Drill 3:

Notice the following squares and count the square centimetres which form each square (number of small squares), then complete as the example.

	Square number	Number of small squares (cm²)	Side length of square	Notes
Example	1	4 cm ²	2 cm	4 = 2 × 2
	2			
	3			

Given that the area of the square = Number of the small squares (cm²), then complete:

a Area of square $1 = 4 \text{ cm}^2 = 2 \text{ cm} \times 2 \text{ cm}$

b Area of square $\mathbf{2} = \dots \operatorname{cm}^2 = \dots \operatorname{cm} \times \dots \operatorname{cm}$

c Area of square **3** = = ... cm × ... cm

From the previous, we deduce that:

Area of the square = side length \times

Shorouk Press

Drill 4:

Using the previous relations, complete.

- **a** Area of square of side length 9 cm = $\dots \times \dots \times \dots = \dots \text{ cm}^2$
- **b** Area of square of side length 2 cm = $\dots \times \dots = \dots$
- Perimeter of a square is 24 cm
 Side length of the square = ÷ 4 = cm (Why?)
 Area of the square = × =

Drill 5:

Notice the following rectangles and calculate the number of square centimetres (small squares) in each figure, then complete.

		Rectangle number	Number of square centimetres (area)	Rectangle length	Rectangle width	length $ imes$ width
E>	ample	1	6 cm ²	3 cm	2 cm	$3 \text{ cm} \times 2 \text{ cm} = 6 \text{ cm}^2$
1		2				× =
		3				× =

From the previous, we deduce that:

Area of the rectangle = $\dots \times \dots$

Drill 6:

Use the previous relation between the area of the rectangle and its dimensions, then complete.

- Area of rectangle whose length is 9 cm and width 6 cm equals a \dots cm \times \dots cm = \dots cm².
- Area of rectangle whose dimensions are 3 cm and 8 cm equals b×....=....
- The perimeter of a rectangle is 18 cm and its width 3 cm С length + width = $\frac{1}{2}$ perimeter = cm We know that width = 3 cm, then length = $\dots - \dots = \dots = \dots$ cm Then, area of rectangle = $\dots \times \dots = \dots$
- The length of a rectangle is 12 cm, which is twice its width. d width of rectangle = $\frac{1}{2}$ length = cm Then, area of the rectangle = $\dots \times \dots = \dots$ cm

Drill 7:

The figure opposite represents a rectangle whose dimensions are 10 cm and 6 cm with a square of side length 5 cm inside it. Calculate:

- the area of the shaded part. 1
- the perimeter of the shaded part. 2

Drill 8:

We knew that the square centimetre (cm²) is the area of a square of side length 1 cm. Use the same pattern to write mathematical statements to show the meaning of the following units of area.

- the square metre (m²) is the area of a square of side length a $(m^2 = 1 m \times 1 m)$
- The square kilometre (km²) is the area of whose side b $(km^2 =)$ length $(dm^2 = \dots \times \dots)$
- The square decimetre (dm²) is С

Drill 9:

Use the relations you got in the previous drill, and complete.

- **a** $m^2 = 1 m \times 1 m = 100 cm \times 100 cm = 10 000 cm^2$
- **b** $km^2 = \dots km \times \dots km = \dots m \times \dots m = \dots m^2$
- **c** $dm^2 = \dots dm \times \dots dm = \dots cm \times \dots cm = \dots cm^2$

From the previous, we deduce that:

The square decimetre = 100 cm^2 The square metre = 100 dm^2 = $10\ 000 \text{ cm}^2$ the square kilometre = $1\ 000\ 000\ \text{m}^2$

Drill 10:

Choose the suitable unit to measure each of the following.

 (km^2, dm^2, cm^2, m^2) Area of the floor of the room. а Area of the agricultural land in Egypt. (km^2, dm^2, cm^2, m^2) b Area of the surface of a book page. (km^2, cm^2, m^2) С Area of the playground of your school. (km^2, cm^2, m^2, dm^2) d Area of the eastern desert. (km^2, cm^2, dm^2) е **Drill 11:** Choose the closest answer. Area of the flat which I live in is а (75 km², 75 cm², 75 m², 75 dm²) Area of the classroom in our school is b (24 m², 24 cm², 24 km²) A pupil in Primary 4 used his geometric instruments to draw a С rectangle whose area is $(12 \text{ m}^2, 12 \text{ dm}^2, 12 \text{ cm}^2)$ Area of the tile used in tilling our house is d (25 dm², 25 cm², 25 m²)

- Put (✓) for the correct statement and (X) for the incorrect one and correct the wrong statement.
 - a The square metre (m²) is a unit of measurement used to measure the perimeters of figures.
 - **b** The decimeter (dm) is a unit of measurement used to measure the areas of the figures.
 - The millimetres (mm) is a unit of measurement used to measure the lengths of the things.
 - **d** Area of square = side length \times 4
 - Area of rectangle whose length is 2 dm and width 5 cm is 100 cm².
 - Area of a square-shaped piece of land of side length 3 km is 9 million m².
- 2 Complete.
 - **a** 3 cm = mm
 - **c** 2 km = m
 - **e** 50 mm = cm
 - **g** 4 200 mm = dm
 - i 6 000 m = km
- **3** Complete.
 - **a** 3 m² = dm²
 - **c** $\frac{1}{2}$ km² = m²
 - **e** 90 000 cm² = m²

- **b** 5 dm = cm
- **d** 2 m = cm
- **f** 850 cm = dm
- **h** 8 000 cm = m
- **j** 3 km = m
- **b** 7 m² = cm²
- **d** 2 700 dm² = m²
- **f** 6 000 000 m^2 = km^2

85

)

)

)

Unit 4 Activities

1 Complete.

- **a** 65 348 475 three hundred thousand =
- **b** The value of the digit 4 in the number 546 789 =
- **c** The L.C.M. for the numbers 4 and 8 is
- **d** The H.C.F. for the numbers 6 and 30 is
- **e** The side length of a square whose perimeter is 36 cm =

Complete using a suitable sign <, >, or = in each .

- **a** 3 407 805 + 92 716 3 500 521 1
- **b** 256×4 **C** 256×5
- **c** 9 600 ÷ 5 🛄 9 600 ÷ 4
- **d** Perimeter of a square of side length 2 m Perimeter of a rectangle whose dimensions are 24 dm and 16 dm.
- 3 Draw the rectangle ABCD in which BC = 4 cm and AB = 3 cm. Draw AC and BD where M is their point of intersection.
- Factorize each of the two numbers 24 and 30 to its prime factors, then find:
 - **a** the L.C.M. for 24 and 30.
 - **b** the H.C.F. for 24 and 30.

Choose the correct answer. 7 251 309 + 748 691 = а (8 milliard, 8 million, 8 thousand) b 5 000 000 - 324 067 = (95 324 076, 91 675 933, 4 675 933) $8 \times 641 \times 125 = ...$ С (641 thousand 641 hundred 641 million) The number 2 100 is divisible by (35, 11, 13, 17) d XYZ is a triangle in which $m(\angle X) = 40^{\circ}$ and $m(\angle Y) = 30^{\circ}$. e then ΔXYZ is triangle. (a right-angled, an obtuse-angled, an acute-angled) The L.C.M. of 15 and 35 is (15, 105, 35, 5)f Draw the square XYZL whose side length 3 cm. Join its 2 diagonals XZ and YL. Multiples of 6 are, and а Prime factors of 350 are, and b The perimeter of a rectangle whose dimensions are 7 cm С and 11 cm = cm The H.C.F. of 18 and 30 is d $\frac{1}{4}$ of a day = hours = minutes. e Calculate 2 106 425 + 894 075 - 3 000 500. а Find the number that if subtracted from 256 412 307, then b the remainder will be 255 million.

First Term

General revision on the Mathematics syllabus for Fourth form Primary - for the first term

1 Complete each of the following :

- 1. The Smallest 7-digit number is
- 2. The Smallest different 6-digit number is
- 5. The million is the smallest number formed from digits.
- 6. Without repeating digits, the greatest number formed from the digits: 0, 3, 2, 5, 1, 6 is
- 7. Ten million is the smallest number formed from digits.
- 8.49 × 830 = ………

In the Exercises $(9 \rightarrow 15)$, the place value of the digit

- 9. 6 in the number 2641
- 10. 4 in the number 54678
- 11. 2 in the number 762618
- 12. 8 in the number 73985241
- 13.7 in the number 54365724
- 14. 5 in the number 135649728
- 15. 3 in the number 2834571

16. Rewrite the following numbers using the digits :

- (a) 2 million, 37 thousand, 9
- (b) 24 million, 35 thousand, 47
- (c) 4 million , 7 thousand , 706
- (d) 5 million, one thousand
- (e) 4 million, five hundred and thirty eight.
- (f) 45 million, 30 thousand, 99
- (g) 32 million, 8 thousand, 15
- (h) 6 million, 727 thousand, 704
- (j) 71 million , 354 thousand , 12
- 17.350 tens = \dots hundreds.

18. 15 0000 = hundreds.

- 19. 3092000 = million , thousand.
- 20. 342 million = thousand.
- 21. 240 thousand = \cdots hundreds = \cdots
- 22. L.C.M of the numbers 36, 24 and 12 is

23. H.C.F of the numbers 35,	42 and 28 is	
24. The greatest number forme	ed from the digits 5,8,4, and	19 is
25. The place value of the digi	t 3 in the number 8 376 542 is	
26. The prime numbers that ar	e included between 2, 30 is	
27. The prime numbers that lie	between 6 and 10 is	
-	factors are 2, 3 and 5 is	
29. From the numbers $865, 5'$		
Complete the following :		
(a) Numbers that are divis	ible by 2 are	
(b) Numbers that are divis		
(c) Numbers that are divis	ible by 10 are	
2 Choose the correct answer :		
1. The million is the smallest	number formed from d	igits.
a. 3	b. 7	c.4
• •	million in the number 4683571	
a. 6	b. 8	c. 3
$3.50 \times 40 = \dots$ hundred		2000
a. 2	b. 200	c. 2000
4. 805 × 100 = × 10 a. 85	h 9050	a 250
	b. 8050	c. 250
5. 280 tens 28 hundre a. >	b. <	0 –
		c. =
6. The value of the digit 8 in a. 80 000	b. 800 000	c. 8000
7. 150 thousands =		•••••••
a. 150 tens	b. 15 thousands	c. 1500 hundreds
8. Three millions , three thou	sands and three is	
a. 300 3003	b. 30 300	c. 3030
9. The value of the digit 7 in	the number 40735126 is	
a. 7 million	b. 70 thousand	c. 700 thousand
10.71 million , 354 thousand a	and 12	
a. 71354120	b. 7135412	c. 71354012
11. 365274 359876		
a.>	b. <	c.=
$12.30 \times 40 \dots 20 \times 60$		
a. <	b.>	c.=
$13.6934 + 3359 = \dots$		

Shorouk Press

First Term 95

a. 12093	b. 10293	c. 20193
14. 5 million 500 00	0	
a. <	b.>	c. =
15. The value of the digit 8 i	n the number 1096835 is	
a. 8	b. 800	c. 8000
16 is one of the fact	ors of the number 8	
a. 16	b.4	c. 20
$17.70 \times 20 = 14 \times \dots$		
a. 10	b. 100	c. 1000
$18.40 \times 500 \dots 20 \times 10^{-10}$)	
a. >	b. =	c. <
19. The numbers 1, 5, 7 are	e	
a. even	b. odd	c. prime
20.54 is a number that is div	visible by	
a. 4	b. 6	c. 7
21. The number is di	5	
a. 495	b. 594	c. 54
3 Find the result of each of a	the following :	
a. 879156 + 498068 =		
b. 608467 - 129585 =		
c. 2525 ÷ 25 =		
d. 4803 × 67 =		
e. 471564 + 126469 =		
f. 738594 – 153037 =		
4 Solve the following proble	<i>m</i> ς •	
1. Factorize the number 12		
	hat are divisible by 2 and $3, 192$	26 - 3431 - 3330 - 2112 -
1064	•	
3. In a certain year the prof	it of one factory was L.E. 7316	, if the profit is distributed
1	ers, find the share of each work	
	$5,502 \times 90$, then deduce the pr	roduct of 502×96
5. Find a prime number lies	s between 11 and 37	

- 6. Find L.C.M , H.C.F for the numbers 12 and 15
- 7. A hotel contains 204 rooms divided equally by a number of floors , each floor contains 17 rooms. How many floors are there in this hotel ?
- 8. Draw \triangle ABC right at B, where BC = 4 cm., AB = 3 cm., Write the type of this triangle according to its side lengths.
- 9. Using the geometric instruments Draw Δ XYZ in which XY = 7 cm., YZ = 5 cm.

96

 $, m (\angle XYZ) = 40^{\circ}$

- 10. If the sum of two perimeters of two squares is 88 cm. and if the side length of one of the two squares is 12 cm. , then find :
 - (a) The side length of the other square.
 - (b) The difference between the areas of the two squares.

11. Draw \triangle ABC in which AB = 5 cm., (\angle B) = 90°, BC = 5 cm., then complete :

- (a) AC = cm.
- (b) The perimeter of \triangle ABC = cm.
- (c) The type of the \triangle ABC according to its side lengths is
- (d) The type of the \triangle ABC according to the measures of its angles is
- 12. Draw the square ABCD of side length 4 cm. , Join its diagonals \overline{AC} , \overline{BD} to intersect at M , Find the area of the square ABCD 6 cm
- 13. The opposite figure :
 - Shows a rectangle drawn inside another one.
 - (a) Find the area of the shaded part.
 - (b) Find the difference between the perimeters of the two rectangles

5 Put the suitable relation (<,> or =) :

- $1.\,652\times4\,\cdots\cdots\,652\times5$
- 2. The area of a square of side length 6 the area of rectangle whose dimensions are 4 cm. , 6 cm.
- 3. 12 500 ÷ 5 ……… 10 × 25
- $4.\ 678345\ \dots\ 578344\ +\ 100\ 000$
- 5. The measure of the straight angle the sum of the measure of the angle of a triangle.
- 6. The measure of the right angle the measure of the obtuse angle.
- 7. $2\ 0000 \div 4 \ \dots \ 2\ 000 \div 4$
- 8. The perimeter of a square of side length 6 cm. The perimeter of an equilateral triangle of side length 7 cm.
- 9. 4 milliard 40 × 1000 000
- $10.6 \times 15 \dots 90 \div 2$
- 11.6 × 4 milliard 40 × 1000 000
- $12.6 \times 70 \times 10 \dots 5 \text{ tens} \times 100$
- $13.200 120 \dots 160 \div 2$
- 14. 800 dm². 8 m².
- 15.3 meters , 5 centimeters 350 cm.
- 16. The value of the digit 4 in the number 94876 the value of the digit 8 in the number 94876.

6 Choose the correct answer :

Shorouk Press

1. The numbers 2, 3, 5, 7 are called numbers. (prime – odd – even)

2. The measure of any angle of a square equals	(45-90-150)
3. The two perpendicular straight lines form 4 angles.	
(a cute – r	right – obtuse)
4. The number of the factors of the prime number is (one -	two – three)
5. The number is a prime number. (15 - 17 - 21)
6. Number of sides of any polygon does not equal number of its	
(diagonals – angl	les – vertices)
7. If the perimeter of an equilateral triangle is 12 cm., then its side length is	cm.
	(3-36-4)
8.3 $\frac{1}{2}$ km. =m. (35-	- 3500 - 350)
9. L.C.M for the numbers 8, 12 is	(24-48-4)
10. The value of the digit 3 in the number 736542 is	
(thousands – ten thousands – hundred thousand	ds – millions)
11. The number is divisible by each of 2 and 5. (7)	2 - 25 - 100)
12. The prime number after the number 399 is (400	- 401 - 403)
13. The diagonals of the square are	
(equal in length and not perpendicular – perpendicular but not equal in	length – equal

in length and perpendicular)

98

	Model		
Complete each of the fold 1. The number 3 milliard		thousand is written	in digits as
 The number 5 miniate The prime number who 			in digits as
3. The prime number has			
$4.3 \text{ m}^2. \dots \text{ dm}^2.$		$5.\frac{1}{3}$ of a day	= hour.
6. If the dimension of a d perimeter = cr		a rectangle are 180	cm., 10 dm., then its
Choose the correct answ	er :		
1. The number 15 is a con	-		
a. 2,5	b. 3,4	c. 5,3	
 The diagonals are equation as a square and rectangle c. rectangle and rhomb 	e b. parallelogra	m and rectangle	
3. The value of the digit 5	5 in the number 561	12816 is	
a. thousand d. hundred thousands	b. million	c. tens	
4 is a common m	ultiple for all num	bers	
a. zero	b. 1	c . 10	d. 100
5. The milliard is the sma		•	
a. 7	b. 8	c. 9	d. 10
6. The perimeter of a squa			1.70
a. 24 cm.	b. 144 cm.	c. 1296 cm.	d. 72 cm.
Find the result of each o_{1}		(1) 7256212	7056200
(a) $8752013 + 439815 =$ (c) $436 \times 59 = \dots$		(b) $7236312 -$ (d) $15408 \div 36$	7056300 = ······
(a) Factorize the two num	30 to the		
1. H.C.F	2. L.C.	1	
(b) Draw \triangle ABC in which			cm., then
1. By using the ruler 2. State the type of Δ	•		
(a) Find the greatest and the digits : 7,0,2,5,9		•	• •

	Model (2)
	 Model (2) Complete each of the following : The smallest number formed from 7 digits from the digits 5 , 8 , 4 , 7 , 0 , 2 , 3 is The area of the square whose side length 5 cm. is The value of the digit 3 in the number 3721014 is The value of the digit 3 in the number 3721014 is The value of the digit 3 in the number 3721014 is
	 2 Choose the correct answer : 1. L.C.M for the numbers 20 and 12 is
	3 Complete using (< ,> or =): 1. 4 cm ²
	 5 (a) In the opposite figure : Find the area of the shaded part (b) In a school if 756 pupils are distributed equally on 18 classes. Find number of pupils in each class
1	00

First Term

Mathematics for Primary Stage-Year 4

(b) Its perimerter.

Shorouk Press

First Term

Model (7) **1** Complete the following : 1.94 million , 35 thousand , $15 = \dots$ 2. The value of the digit 3 in the number $3721014 = \dots$ 3. The H.C.F of the two numbers 16 and $24 = \dots$ 4. The L.C.M of t he two numbers 14, $10 = \dots$ $5.465276 + \text{three hundred thousand} = \dots$ 6. The length of the side of the square whose perimeter 36 cm =..... **2** Choose the correct answer : $1.950000 - 324067 = \dots$ (324076 or 625933 or 675933) 2. The number 2100 is divisible by (7 or 11 or 13) 3. \triangle XYZ in which m (\angle X) = 40°, m (\angle Y) = 30°, then \triangle XYZ is (acute angled triangle or right angled triangle or obtuse angled triangle) 4. The number 108 is divisible by the two prime numbers 3, (5 or 7 or 2) 5. The number is prime number. (6 or 8 or 2) $6.8 \times 641 \times 125 = \dots$ (641 thousand or 641 hundred or 641 million) 3 Put (\checkmark) in front of the correct statement or (\land) in front of the incorrect one : $1.4816 \div 4 = 124$ () 2. In the \triangle ABC, if m (\angle B) = 105°, then it is possible to be an obtuse angled triangle.) (3. The square metre (m^2) is used for measuring the perimeters of the shapes.) (4. The two parallel straight lines never intersect each other () 5. The area of the square = side \times side () 6. In a rhombus, all the sides are equal in length) 4 1. Find the quotient of $19836 \div 6$ (without using the calculator) 2. Find L.C.M of the two numbers $(5 \times 4 \times 11)$, $(5 \times 6 \times 11)$ 5 1. Draw the rectangle ABCD in which BC = 4 cm., AB = 3 cm.draw \overline{AC} intersects \overline{BD} at M 2. A rectangular piece of land, its width equals half its length, Calculate its perimeter

if its width = 24 metre.

	lel (9)
Choose the correct answer :	
1. The smallest prime number is	$(0 \ or \ 1 \ or \ 2)$
2. 45 tens = \dots	(45 or 450 or 4500)
3is the smallest number divisibl	-
4. All the sides are equal in length in the	
5. The area of the rectangle whose dimen	(square <i>or</i> rectangle <i>or</i> parallelogram)
5. The area of the rectangle whose dimen	(16 cm. <i>or</i> 15 cm. <i>or</i> 8 cm.)
6 The value of the digit 8 in the number	437839562
-	
Put the suitable relation (> , < or =) :	
1. 44302 + 5698 50 thousand	
2. 4 metre	
3. 999 \dots 50 × 20	the measure of the right angle
4. The measure of the acute angle5. 100 thousand	
6. 580 600 718 580 600 708.	1.
Complete the following :	
1. H.C.F for the two numbers 20 and 30 i	
2. The prime even numbers is4. 5 million , 75 thousand , 250 =	$3.300 \times 500 = \dots$
5. The factors of the number 15 are \dots	
6. In the rectangle all angles are	
	ing .
(a) <i>Find the result of each of the followi</i> 1. 62491 + 251542 =	ing:
$2.93642 - 32161 = \dots 3.9180$	÷ 45 =
(b) Nada bought 25 metres of cloth, the	
money did Nada pay ?	price of one mere 1.1. 475 9 How much
(1) Which is greater : the area of the squarectangle whose dimensions 7 cm. and	are whose side length 6 cm. or the area of the d 6 cm. ?
rectangle whose dimensions 7 cm. and	

رقم الايداع ٩٠٩٩ / ٢٠١٢

جميع حقوق الطبع محفوظة لوزارة التربية والتعليم داخل جمهورية مصر العربية

الشروة__

الحديثة للطباعة والتغليف القاهرة : ٨ شارع سيبويه المصرى ـ ت : ٢٤٠٢٣٩٩ ـ فاكس : ٢٤٠٣٧٥٦٧ (٠٢) مدينة العبور ـ المنطقة الصناعية حافظ على الصلاة ، فالصلاة عماد الدين.
 أطع والديك وأحب زملاءك.
 أطع معلمك ومعلمتك وأحبهما.
 حافظ على نظافة كتبك وأدواتك.
 حافظ على كل جزء من مدرستك.
 احترم قواعد المرور.

الشروق. الحديثة للطباعة والتغليف