

إجابات مراجعة أسئلة الدرس

الحموض والقواعد

السؤال الأول:

أكمل الجدول الآتي باستخدام الأسس التي اعتمد عليها مفهوم الحمض والقاعدة:

الأساس الذي يقوم عليه المفهوم		المفهوم
القاعدة	الحمض	المتهرا
مادة تتأين في الماء وتنتج أيون الهيدروكسيد	مادة تتأين في الماء وتنتج أيون الهيدروجين	أرهينيوس
مادة تستقبل بروتون أثناء التفاعل	مادة مانحة للبروتون أثناء التفاعل	برونستد - لوري
مادة تمنح زوج أو أكثر من الإلكترونات	مادة تستقبل زوج أو أكثر من الإلكترونات	لويس

السؤال الثاني:

أوضح المقصود بكل ممّا يأتي:

- حمض أرهينيوس.
- حمض برونستد لوري.
 - قاعدة لويس.
 - مادة أمفوتيرية.

حمض أرهينيوس: مادة تتأين في الماء وتنتج أيون الهيدروجين (H^+) .

حمض برونستد - لوري: مادة يمكنها منح بروتون واحد أو أكثر في أثناء التفاعل (مانح للبروتون).

قاعدة لويس: مادة تستطيع أن تعطي زوجاً (أو أكثر) من الإلكترونات غير الرابطة. المواد الأمفوتيرية: مواد تستطيع أن تتفاعل كحمض أو كقاعدة تبعاً للظروف الموجودة فيها.

السؤال الثالث:

ا/1

أفسر:

• السلوك الحمضي لمحلول حمض HClO حسب مفهوم أرهينيوس. (H^+)

. السلوك القاعدي لمحلول $\mathrm{C_2H_5NH_2}$ حسب مفهوم برونستد - لوري

لأنها تستقبل بروتون من الحمض أثناء التفاعل.

• يعد الحمض HBr حمضاً قوياً بينما يعد HNO₂ حمضاً ضعيفاً.

 $^{\prime}$ الحمض $^{+}$ حمض قوي؛ لأنه أكثر قدرة على منح البروتون من الحمض $^{+}$ $^{+}$ والقاعدة $^{-}$ أقل قدرة على استقبال البروتون من القاعدة $^{-}$ أقل قدرة على استقبال البروتون

الحمض ${
m HNO_2}$ حمض ضعيف؛ لأنه أقل قدرة على منح البروتون من الحمض ${
m H_2O}$. ${
m H_2O}^+$ والقاعدة ${
m NO_2}^-$ أكثر قدرة على استقبال البروتون من القاعدة

السؤال الرابع:

أصنف المحاليل الآتية إلى حموض وقواعد قوية أو ضعيفة:

 H_2SO_3 , HI , KOH , HF , NH_3 , N_2H_4

حمضان ضعیفان. H_2SO_3 , HF

HI : حمض قوي.

KOH : قاعدة قوية.

قاعدتان ضعيفتان. $\mathrm{NH_3}$, $\mathrm{N_2H_4}$

السؤال الخامس:

أحدد الأزواج المترافقة في التفاعلين الآتيين:

 $HClO_{(aq)} + C_6H_5NH_{2(aq)} \rightleftharpoons OCl_{(aq)} + CH_3NH_{3(aq)}^+$

$$H_2CO_{3(aq)} + H_2O_{(l)} \rightleftharpoons HCO_{3(aq)} + H_3O_{(aq)}^+$$

 $(C_6H_5NH_2/C_6H_5NH_3^+)$ ، والزوج الثاني ($(HClO/OCl^-)_1H_5NH_3$).

 (H_2O/H_3O^+) والزوج الأول (H_2CO_3/HCO_3) ، والزوج الثانية: الزوج الأول

السؤال السادس:

أحدد الحمض والقاعدة وفق مفهوم لويس في المعادلة الآتية:

$$Fe^{3+}_{(aq)} + 6H_2O_{(l)} = Fe(H_2O)_{6(aq)}^{3+}$$

 (H_2O) ، والقاعدة (Fe³⁺)، والقاعدة

السؤال السابع:

 $^{ ext{O}}$ أفسر السلوك الأمفوتيري للأيون $^{ ext{H}_2} ext{PO}_4$ عند تفاعله مع كـل مـن $^{ ext{HNO}_3}$ و $^{ ext{CN}}$ موضحاً إجابتي بالمعادلات.

يسلك الأيون ${\rm H_2PO_4}^{-}$ كقاعدة عند تفاعله مع الحمض ${\rm HNO_3}$ ؛ لأن له القدرة على استقبال بروتون من ${\rm HNO_3}$.

$$H_2PO_4^{-}_{(aq)} + HNO_3_{(aq)} \rightleftharpoons H_3PO_4_{(aq)} + NO_3^{-}_{(aq)}$$

يسلك الأيون ${\rm H_2PO_4}^{-}$ كحمض عند تفاعله مع القاعدة ${\rm CN}^{-}$ ؛ لأن له القدرة على منح بروتون للقاعدة ${\rm CN}^{-}$.

$$H_2PO_4^-$$
 (aq) + CN^- (aq) $\rightleftharpoons HPO_4^{-2-}$ (aq) + HCN (aq)

السؤال الثامن:

أختار الاجابة الصحيحة لكل فقرة مما يأتي:

الله الأمونيا ${
m NH}_3$ قاعدة عند تفاعلها مع الماء وفق مفهوم برونستد - لوري لأنها: 1

3/5

- أ. تستقبل بروتون.
 - ب. تمنح بروتون.
 - ج. تستقبل OH.
 - د. تمنح OH.
- . 2. الأيون الذي يُمثل القاعدة المرافقة الأقوى فيما يأتي:
 - Cl-.İ
 - ب. NO₃
 - ج. ⁻CN
 - ClO_4 .
- $\mathrm{NH_4}^+$ وهو: $\mathrm{NH_4}^+$ مع $\mathrm{NH_4}^+$ وهو:
 - N_2H_4/NH_4^+ .
 - $N_2H_5^+/NH_3$.
 - $N_2H_4/N_2H_5^{+}$.ح
 - $N_2H_5^+/NH_4^+$...
 - 4. يسلك الأيون ⁻HS سلوكًا حمضياً عند تفاعله مع:
 - HF .l
 - ب. HCOOH
 - ج. ⁻HO
 - NH_4^+ د.
 - 5. لم يستطع أرهينيوس تفسير السلوك الحمضي لـ:
 - HCN.

4/5 منهاج

ب. HClO

ج. IH

د. NH₄Cl

6. في التفاعل الآتي؛ تكون الصيغة الكيميائية لـ A هي:

$$A_{(aq)} + CN_{(aq)}^{-} \rightleftharpoons HPO_{4(aq)}^{2-} + HCN_{(aq)}$$

 H_3PO_4 .

 H_2PO_4 ي.

 $H_{2}PO_{4}^{2}$. ح

د. PH₄

5/5