

أسئلة المحتوى وإجاباتها

أتحقق صفحة (158):

أدرس الجدول (8)، ثم أجيب عن الأسئلة الآتية:

الجدول (8): قِيَمَ ثابت تأيُّن بعض الحموض الضعيفة عند درجة حرارة °C 25.

ثابتُ تأيُّن الحِمض Ka	صيغته الكيميائيّة	اسم الجِمض
1.3×10^{-2}	H_2SO_3	حِمض الكبريت IV
6.8×10^{-4}	HF	حِمض الهيدروفلوريك
4.5×10^{-4}	HNO_2	حِمض النيتر وجين III
1.7×10^{-4}	НСООН	حِمض الميثانويك
6.3×10^{-5}	C_6H_5COOH	حِمض البنزويك
1.7×10^{-5}	CH₃COOH	حِمض الإيثانويك
4.3×10^{-7}	H_2CO_3	حِمض الكربونيك
8.9×10^{-8}	H_2S	حِمض كبريتيد الهيدروجين
3.5×10^{-8}	HClO	حِمض أحادي الهيبو كلوريك
4.9×10^{-10}	HCN	حِمض الهيدروسيانيك

- H_2CO_3 أم HCOOH أم أحدد الحمض الأقوى:
- 2- أتوقع أيها له أقل رقم هيدروجيني: محلول الحمض HNO_2 أم محلول الحمض HClO_2 . علماً أن لهما التركيز نفسه.
- HF, HClO, :اتوقع أيها يحتوي على أعلى تركيز من أيونات OH^- بين الحموض CH_3COOH ?

الحل:

ا على. $K_{\rm a}$ الحمض الأقوى: HCOOH ؛ لأن له قيمة ثابت تأين $K_{\rm a}$

- اعلى. K_a محلول الحمض HNO_2 له أقل رقم هيدروجيني؛ لأن له قيمة ثابت تأين K_a أعلى.
- K_a أقل. K_a أونات OH^- في محلول الحمض؛ لأن له قيمة ثابت تأين أقل.

أتحقق صفحة (159):

أحسب تركيز أيونات $^+ H_3 O^+$ في محلول حمض النيتروجين ($^-$ III) HNO أحسب تركيزه $^-$ علماً أن $^ ^-$ 4.5 x 10 علماً أن

الحل:

أكتب معادلة تأين الحمض:

 $HNO_2 + H_2O \rightleftharpoons H_3O^+ + NO_2^-$

أكتب قانون ثابت تأين الحمض:

 $K_a = [H3O+][NO2-][HNO2] = [H3O+]2[HNO2]$ $[H_3O^+] = [NO_2]$

: K_a أعوض تركيز الحمض عند الاتزان، وقيمة

 $4.5 \times 10^{-4} = [H3O+]2 \ 0.03$ $x^2 = 4.5 \times 10^{-4} \times 0.03 = 13.5 \times 10^{-6}$

وبأخذ جذر الطرفين:

 $x = [H_3O^+] = 3.7 \times 10^{-3} M$

اتحقق صفحة (160):

أحسب الرقم الهيدروجيني pH لمحلول حمض الهيدروسيانيك HCN ، الذي تركيزه

0.02 M

$$K_{\rm a} = 4.9 \; {\rm x} \; 10^{\text{--}10}$$
 , log 3.13 = 0.5 علماً أن

الحل:

أكتب معادلة تأين الحمض:

 $HCN + H_2O \rightleftharpoons H_3O^+ + CN^-$

أكتب قانون ثابت الاتزان:

 $K_a = [H3O+] [CN-][HCN] = [H3O+]2 [HCN]$ $[H_3O^+] = [CN^-]$

: K_a أعوض تركيز الحمض عند الاتزان، وقيمة

 $4.9 \times 10^{-10} = [H3O+]2 \ 0.02$

 $x^2 = 4.9 \times 10^{-10} \times 0.02 = 9.8 \times 10^{-12}$

وبأخذ جذر الطرفين:

 $x = [H_3O^+] = 3.13 \times 10^{-6} M$

أتحقق صفحة (162):

 $0.5~{\rm L}$ اللازمة لتحضير محلول منه حجمه HCOOH أحسب كتلة حمض الميثانويك $K_{\rm a}=1.7~{\rm x}~10^{-4}, Mr=46~{\rm g/mol}$ ورقمه الهيدروجيني يساوي 3 علماً أن

الحل:

أحسب تركيز أيون $^+\mathrm{H_3O}^+$ من قيمة الرقم الهيدروجيني:

 $[H_3O^+] = 10^{-pH}$

 $[H_3O^+] = 10^{-pH} = 10^{-3} = 1 \times 10^{-3} M$

أكتب معادلة ثابت تأين الحمض:

 $HCOOH_{(aq)} + H_2O_{(l)} \Rightarrow HCOO_{(aq)}^- + H_3O_{(aq)}^+$

أكتب قانون ثابت تأين الحمض:

 $K_a = [H3O+][HCOO-][HCOOH] = [H3O+]2[HCOOH]$ $[H_3O^+] = [HCOO^-]$

: K_a أعوض تركيز أيون الهيدرونيوم عند الاتزان، وقيمة

 $1.7 \times 10^{-4} = (1 \times 10-3)2[HCOOH]$

 $[HCOOH] = 5.9 \times 10^{-3} M$

أحسب عدد مولات الحمض (n) من تركيز الحمض وحجمه:

 $n = M \times V = 5.9 \times 10^{-3} \times 0.5 = 2.95 \times 10^{-3} \text{ mol}$

أحسب كتلة الحمض (m) من عدد مولاته وكتلته المولية:

 $m = n \times Mr = 2.95 \times 10^{-3} \times 46 = 135.7 \times 10^{-3} g$

أتحقق صفحة (163):

بالرجوع إلى الجدول (9)، أجيب عن الأسئلة الآتية:

الجدول (9): قِيَمُ ثابت التأيُّن لبعض القواعد الضعيفة عند درجة حرارة °C 25.

$K_{ m b}$ ثابت تأيُّن القاعدة	صيغة القاعدة	اسم القاعدة
4.7×10^{-4}	$C_2H_5NH_2$	إيثيل أمين
4.4×10^{-4}	CH_3NH_2	ميثيل أمين
1.8×10^{-5}	NH_3	أمونيا
1.7×10^{-6}	$N_2^{}H_4^{}$	هيدرازين
1.4×10^{-9}	C_5H_5N	بيريدين
2.4×10^{-10}	$C_6H_5NH_2$	أنيلين

- 1- أتوقع المحلول الذي له أقل رقم هيدروجيني $\mathrm{NH_3}$ أم $\mathrm{C_5H_5N}$. علماً أن لهما التركيز نفسه.
 - 2- أحدد القاعدة الأقوى في الجدول.
- $\mathrm{CH_3NH_2}$ أم $\mathrm{CH_3NH_2}$ أم $\mathrm{CH_3NH_2}$ أم $\mathrm{N_2H_4}$

الحل:

- د المحلول الذي له أقل رقم هيدروجيني هو: $\mathrm{C_5H_5N}$ ؛ لأن لها قيمة $\mathrm{K_b}$ أقل.
 - . القاعدة الأقوى في الجدول هي: $\mathrm{C_2H_5NH_2}$ ؛ لأن لها قيمة $\mathrm{K_b}$ أعلى.
 - $m N_2H_4$:القاعدة التي يكون حمضها المرافق أقل رقم هيدروجيني هي-3

أتحقق صفحة (164):

 $^{\circ}$ تتأين الهيدرازين $^{\circ}_{2} ext{H}_{4}$ ذات التركيز $^{\circ}_{2} ext{M}_{2}$ ، وفق المعادلة الآتية:

$$N_2H_{4 (aq)} + H_2O_{(l)} \rightleftharpoons N_2H_{5 (aq)}^+ + OH_{(aq)}^-$$

 $K_{\rm b}=1.7~{
m x}$ في المحلول. علماً أن ثابت تأين الهيدرازين OH أحسب تركيز أيونات $^{5/8}$

 10^{-6}

الحل:

أكتب معادلة تأين القاعدة:

$$N_2 H_{4 (aq)} + H_2 O_{(l)} \rightleftharpoons N_2 H_5^{+}_{(aq)} + O H_{(aq)}^{-}$$

أكتب قانون ثابت تأين الحمض:

$$K_b = [OH-][N2H5+][N2H4] = [OH-]2[N2H4]$$

 $[OH^-] = [N_2H_5^+]$

 $: \mathrm{K}_{ exttt{ iny b}}$ أعوض تركيز القاعدة عند الاتزان، وقيمة

$$1.7 \times 10^{-6} = [OH-]2 \ 0.04$$

$$x^2 = 1.7 \times 10^{-6} \times 0.04 = 6.8 \times 10^{-8}$$

وبأخذ جذر الطرفين:

$$x = [OH^{-}] = 2.6 \times 10^{-4} M$$

أتحقق صفحة (165):

أحسب الرقم الهيدروجيني لمحلول الأمونيا $_3$ NH ، الذي تركيزه $_3$ علماً أن log $_3$ 1.66 = 0.22 , $_3$ $_4$ $_5$ $_5$

الحل:

أكتب معادلة تأين القاعدة:

$$NH_{3 (aq)} + H_{2}O_{(l)} \approx NH_{4 (aq)}^{+} + OH_{(aq)}^{-}$$

أكتب قانون ثابت تأين الحمض:

$$K_b = [OH-][NH4+][NH3] = [OH-]2[NH3]$$

= $[NH_4^+]$

 $[OH^{-}]$

: $K_{
m b}$ غوض تركيز القاعدة عند الاتزان، وقيمة

 $1.8 \times 10^{-5} = [OH-]2 \ 0.02$

 $x^2 = 1.8 \times 10^{-5} \times 0.02 = 36 \times 10^{-8}$

وبأخذ جذر الطرفين:

 $x = [OH^{-}] = 6 \times 10^{-4} M$

: K_w من علاقة H_3O^+

 $[OH^{-}][H_{3}O^{+}] = 1 \times 10^{-14} K_{w} =$

 $0.166 \times 10^{-10} = 1.66 \times 10^{-11} M [H_3O^+] = Kw[OH-] = 1 \times 10-146 \times 10-4 = 0.166 \times 10^{-10} = 1.66 \times 10^{-11} M [H_3O^+] = 1.66 \times 10^{-10} = 1.66 \times 10^{-10} = 1.66 \times 10^{-11} M [H_3O^+] = 1.66 \times 10^{-10} = 1.66 \times 10^{-10} = 1.66 \times 10^{-10} M [H_3O^+] = 1.66 \times 10^{-10} M [$

أحسب قيمة pH :

 $pH = -\log [H_3O^+]$

pH = $-\log (1.66 \times 10^{-11}) = 11 - \log 1.66 = 11 - 0.22 = 10.78$

أتحقق صفحة (166):

أحسـب ثـابت تأيـن القاعـدة بيوتيـل أميـن ${
m C_4H_9NH_2}$ ، التـي تركيزهـا ${
m M}$ ورقمهـا الهيدروجينى ${
m 12}$

الحل

: pH من قيمة H_3O^+

 $[H_3O^+] = 10^{-pH} = 10^{-12} = 1 \text{ x}10^{-12} \text{ M}$

 $: K_w$ من علاقة OH

 $[OH^{-}][H_{3}O^{+}] = 1 \times 10^{-14} K_{w} =$

 $[OH^{-}] = Kw[H3O+] = 1 \times 10-141 \times 10-12 = 1 \times 10^{-2} M$

أكتب معادلة تأين القاعدة:

 $C_4H_9NH_{2 (aq)} + H_2O_{(l)} \rightleftharpoons C_4H_9NH_{3 (aq)}^+ + OH_{(aq)}^-$

أكتب قانون ثابت تأين الحمض:

 $K_b = [OH-] [C4H9NH3+] [C4H9NH2] = [OH-]2 [C4H9NH2]$ $[OH-] = [C_4H_9NH_3^+]$

أعوض تركيز القاعدة وتركيز أيون الهيدروكسيد عند الاتزان:

 $K_b = (1 \times 10-2)2 \ 0.4$

 $K_b = 0.25 \times 10^{-3}$