حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتدرب وأحل المسائل

أتدرب وأحل المسائل

قوانين اللوغاريتمات

أتدرب وأحل المسائل

إذا كان: loga 6 ≈ 0.778 ، وكان: loga 5 ≈ 0.699 ، فأجد كلاً ممّا يأتي:

(1) loga begin mathsize 20px style 5 over 6 end style

loga begin mathsize 20px style 5 over 6 end style = loga 5 – loga 6

             ≈ 0.699 – 0.778 ≈ -0.079

(2) loga 30

loga 30 = loga (5 x 6)

             = loga 5 + loga 6

             ≈ 0.699 + 0.778 ≈ 1.477

(3) = begin mathsize 20px style fraction numerator log subscript a space 5 over denominator log subscript a space 6 end fraction end style

begin mathsize 20px style fraction numerator l o g subscript a space 5 over denominator l o g subscript a space 6 end fraction end style = begin mathsize 20px style fraction numerator 0.699 over denominator 0.778 end fraction end stylebegin mathsize 20px style 699 over 778 end style ≈ 0.90

(4) loga begin mathsize 20px style 1 over 6 end style

loga begin mathsize 20px style 1 over 6 end style = loga 1 – loga 6

             ≈ 0 - 0.778 ≈ -0.778

(5) loga 900

loga  900 = loga 302

                = 2 loga 30

                = 2 loga (5 x 6)

                = 2 (loga 5 + loga 6)

                ≈ 2 (0.699 + 0.778)

                ≈ 2 x 1.477 ≈ 2.954

(6) loga begin mathsize 20px style 18 over 15 end style

loga begin mathsize 20px style 18 over 15 end style = logbegin mathsize 20px style 6 over 5 end style

              = loga 6 – loga 5

              ≈ 0.778 - 0.699 ≈ 0.079

(7) loga (6 a2)

loga (6 a2) = loga 6 + loga a2

                  = loga 6 + 2 loga a

                  ≈ 0.778 + 2 ≈ 2.778

(8) logbegin mathsize 20px style fourth root of 25 end style

loga begin mathsize 20px style fourth root of 25 end style = loga begin mathsize 20px style fourth root of 5 squared end root end style

                = loga begin mathsize 20px style 5 to the power of 2 over 4 end exponent end style

                = loga begin mathsize 20px style 5 to the power of 1 half end exponent end style

                = begin mathsize 20px style 1 half end style loga 5

                ≈ begin mathsize 20px style 1 half end style x 0.699 ≈ 0.350

(9) (loga 5)(loga 6)

(loga 5)(loga 6) ≈ 0.699 x 0.778 ≈ 0.544

 

أكتب كل مقدار لوغاريتمي ممّا يأتي بالصورة المطولة، علماً بأنّ المُتغيرات جميعها تُمثّل أعداداً حقيقية موجبة:

(10) loga x2

loga x2 = 2 loga x

(11) loga (begin mathsize 20px style fraction numerator a over denominator b c end fraction end style)

loga (begin mathsize 20px style fraction numerator a over denominator b c end fraction end style) = loga a – loga bc

                 = loga a – (loga b + loga c)

                 = loga a – loga b - loga c

                 = 1 – loga b - loga c

(12) = loga (begin mathsize 20px style square root of x end stylebegin mathsize 20px style square root of y end style)

loga (begin mathsize 20px style square root of x end stylebegin mathsize 20px style square root of y end style) = loga begin mathsize 20px style square root of x end style + loga begin mathsize 20px style square root of y end style

                       = loga begin mathsize 20px style x to the power of 1 half end exponent end style + loga begin mathsize 20px style y to the power of 1 half end exponent end style

                       = begin mathsize 20px style 1 half end style loga xbegin mathsize 20px style 1 half end style loga y

(13) loga (begin mathsize 20px style fraction numerator square root of z over denominator y end fraction end style)

loga (begin mathsize 20px style fraction numerator square root of z over denominator y end fraction end style) = loga begin mathsize 20px style square root of z end style - loga y

                   = loga begin mathsize 20px style z to the power of 1 half end exponent end style  - loga y

                   = begin mathsize 20px style 1 half end style loga z – loga y

(14) loga begin mathsize 20px style fraction numerator 1 over denominator x squared y squared end fraction end style

loga begin mathsize 20px style fraction numerator 1 over denominator x squared y squared end fraction end style = loga 1 – loga x2y2

                  = loga 1 – (loga x2 + loga y2)

                  = 0 – (2 loga x + 2 loga y)

                  = -2 loga x – 2 loga y

(15) loga begin mathsize 20px style fifth root of 32 x to the power of 5 end root end style

loga begin mathsize 20px style fifth root of 32 x to the power of 5 end root end style = logabegin mathsize 20px style fifth root of 32 end stylebegin mathsize 20px style fifth root of x to the power of 5 end root end style )

                    = loga 2x

                    = loga 2 + loga x

(16) loga begin mathsize 20px style left parenthesis x squared y cubed right parenthesis squared over left parenthesis x squared y cubed right parenthesis cubed end style

loga begin mathsize 20px style left parenthesis x squared y cubed right parenthesis squared over left parenthesis x squared y cubed right parenthesis cubed end style = loga begin mathsize 20px style fraction numerator 1 over denominator x squared y cubed end fraction end style

                     = loga 1 - loga x2y3

                     = loga 1 – (loga x2 + loga y3)

                     = 0 – (2 loga x + 3 loga y)

                     = – 2 loga x - 3 loga y)

(17) loga (x + y – z)7  , x + y > z

loga (x + yz)7 = 7 loga (x + yz)

(18) loga begin mathsize 20px style square root of fraction numerator x to the power of 12 y over denominator y cubed z to the power of 4 end fraction end root end style

loga begin mathsize 20px style square root of fraction numerator x to the power of 12 y over denominator y cubed z to the power of 4 end fraction end root end style = logbegin mathsize 20px style square root of fraction numerator x to the power of 12 over denominator y squared z to the power of 4 end fraction end root end style

                      = loga = begin mathsize 20px style fraction numerator square root of x to the power of 12 end root over denominator square root of y squared end root square root of z to the power of 4 end root end fraction end style

                      = loga begin mathsize 24px style fraction numerator x to the power of begin display style 12 over 2 end style end exponent over denominator space y to the power of begin display style 2 over 2 end style end exponent z to the power of begin display style 4 over 2 end style end exponent end fraction end style

                      = loga begin mathsize 20px style fraction numerator x to the power of 6 over denominator y z squared end fraction end style

                      = loga x6 – loga yz2

                      = 6 loga x – (loga y + loga z2)

                      = 6 loga x – (loga y + 2 loga z)

                      = 6 loga x – loga y – 2 loga z

 

أكتب كل مقدار لوغاريتمي ممّا يأتي بالصورة المختصرة، علماً بأنّ المُتغيرات جميعها تُمثّل أعداداً حقيقية موجبة:

(19) loga x + loga y

loga x + loga y = loga xy

(20) logb (x + y) – logb (xy) , x > y

logb (x + y) – logb (x - y)  = logb begin mathsize 20px style fraction numerator x space plus space y over denominator x space minus space y end fraction end style

(21) loga begin mathsize 20px style fraction numerator 1 over denominator square root of x end fraction end style – logbegin mathsize 20px style square root of x end style

loga begin mathsize 20px style fraction numerator 1 over denominator square root of x end fraction end style – loga begin mathsize 20px style square root of x end style = loga begin mathsize 20px style fraction numerator begin display style fraction numerator 1 over denominator square root of x end fraction end style over denominator square root of x end fraction end style 

                                  = logbegin mathsize 20px style 1 over x end style

(22) loga (x2 – 4) – loga (x + 2) , x > 2

loga (x2 – 4) – loga (x + 2) = logbegin mathsize 20px style fraction numerator left parenthesis x squared space minus space 4 right parenthesis over denominator left parenthesis x space plus space 2 right parenthesis end fraction end style

                                           = logbegin mathsize 20px style fraction numerator left parenthesis x space plus space 2 right parenthesis space left parenthesis x space minus space 2 right parenthesis over denominator left parenthesis x space plus space 2 right parenthesis end fraction end style

                                           = loga (x – 2)

(23) 2 logb x – 3 logb ybegin mathsize 20px style 1 third end style logb z

= logb x2 – logb y3 + logb begin mathsize 20px style z to the power of 1 third end exponent end style

= logb begin mathsize 20px style x squared over y cubed end style + logb begin mathsize 20px style z to the power of 1 third end exponent end style

= logbegin mathsize 20px style fraction numerator x squared space z to the power of begin display style 1 third end style end exponent over denominator y cubed end fraction end style

= logb begin mathsize 20px style fraction numerator x squared space cube root of z over denominator y cubed end fraction end style

(24) logb 1 + 2 logb b

logb 1 + 2 logb b = logb b2 = 2

 

(25) نمو: يمثل الاقتران: f(x) = 29 + 48.8 log6 (x + 2) النسبة المئوية لطول الطفل الذكر الآن من طوله عند البلوغ، حيث x عمره بالسنوات. أجد النسبة المئوية لطول طفل عمره 10 سنوات من طوله عند البلوغ، علماً بأنّ log6 2 ≈ 0.3869 .

 

f(x) = 29 + 48.8 log6 (x + 2)

f(10) = 29 + 48.8 log6 (10 + 2)

         = 29 + 48.8 log6 12

         = 29 + 48.8 log6 (6 x 2)

         = 29 + 48.8 (log6 6 + log6 2)

         ≈ 29 + 48.8 (1 + 0.3869)

         ≈ 29 + 48.8 (1.3869)

         ≈ 29 + 67.68072

         ≈ 97

النسبة المئوية لطول طفل عمره 10 سنوات من طوله عند البلوغ هي 97% تقريباً.

إعداد : شبكة منهاجي التعليمية

07 / 10 / 2022

النقاشات