حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  مهارات التفكير العليا

مهارات التفكير العليا

مشتقتا اقتران الجيب واقتران جيب التمام

مهارات التفكير العليا

(24) تبرير: إذا كان: begin mathsize 20px style y equals 1 half left parenthesis x minus sin invisible function application space x cos invisible function application space x right parenthesis end style ، فأثبت أنّ begin mathsize 20px style fraction numerator d y over denominator d x end fraction equals sin squared invisible function application space x end style ، مبرراً إجابتي.

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator d y over denominator d x end fraction end cell cell equals 1 half left parenthesis 1 minus left parenthesis left parenthesis s i n invisible function application x right parenthesis left parenthesis negative s i n invisible function application x right parenthesis plus left parenthesis c o s invisible function application x right parenthesis left parenthesis c o s invisible function application x right parenthesis right parenthesis right parenthesis end cell row blank cell equals 1 half left parenthesis 1 minus left parenthesis negative s i n squared invisible function application x plus c o s squared invisible function application x right parenthesis right parenthesis end cell row blank cell equals 1 half left parenthesis 1 plus s i n squared invisible function application x minus c o s squared invisible function application x right parenthesis end cell row blank cell equals 1 half left parenthesis s i n squared invisible function application x plus 1 minus c o s squared invisible function application x right parenthesis end cell row blank cell equals 1 half left parenthesis s i n squared invisible function application x plus s i n squared invisible function application x right parenthesis end cell row blank cell equals 1 half left parenthesis 2 s i n squared invisible function application x right parenthesis end cell row blank cell equals s i n squared invisible function application x end cell end table end style

 

(25) تحدّ: أجد مشتقة الاقتران: begin mathsize 20px style f left parenthesis x right parenthesis equals e to the power of x space sin squared invisible function application space x space cos invisible function application space x end style .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell f left parenthesis x right parenthesis end cell cell equals left parenthesis e to the power of x c o s invisible function application x right parenthesis left parenthesis s i n invisible function application x right parenthesis squared end cell row cell f to the power of straight prime left parenthesis x right parenthesis end cell cell equals left parenthesis e to the power of x c o s invisible function application x right parenthesis left parenthesis 2 left parenthesis s i n invisible function application x right parenthesis to the power of 1 c o s invisible function application x right parenthesis plus left parenthesis s i n invisible function application x right parenthesis squared left parenthesis left parenthesis e to the power of x right parenthesis left parenthesis negative s i n invisible function application x right parenthesis plus left parenthesis c o s invisible function application x right parenthesis left parenthesis e to the power of x right parenthesis right parenthesis end cell row blank cell equals e to the power of x s i n invisible function application x left parenthesis 2 c o s squared invisible function application x minus s i n squared invisible function application x plus c o s invisible function application x s i n invisible function application x right parenthesis end cell end table end style

 

(26) أكتشف الخطأ: أكتشف الخطأ في الحلّ الآتي، ثم أصحّحه:

أكتشف الخطأ

begin mathsize 20px style f to the power of straight prime left parenthesis x right parenthesis equals negative 1 over x squared c o s invisible function application left parenthesis 1 over x right parenthesis end style

إعداد : شبكة منهاجي التعليمية

18 / 11 / 2022

النقاشات