حمّل تطبيق منهاجي الجديد

منهاجي صار أسرع من خلال التطبيق

  أتحقق من فهمي

أتحقق من فهمي

التكامل المحدود

التكامل المحدود

أتحقق من فهمي صفحة (23):

أجد قيمة كل من التكاملين الآتيين:

(a) begin mathsize 20px style integral subscript 1 superscript 4 left parenthesis 8 x minus square root of x right parenthesis d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript 1 superscript 4 left parenthesis 8 x minus square root of x right parenthesis d x end cell cell equals integral subscript 1 superscript 4 left parenthesis 8 x minus x to the power of 1 half end exponent right parenthesis d x end cell row blank cell equals left parenthesis 4 x squared minus 2 over 3 x to the power of 3 over 2 end exponent right parenthesis vertical line subscript 1 superscript 4 end cell row blank cell equals left parenthesis 4 x squared minus 2 over 3 square root of x cubed end root right parenthesis vertical line subscript 1 superscript 4 end cell row blank cell equals left parenthesis 4 left parenthesis 4 right parenthesis squared minus 2 over 3 square root of 4 cubed end root right parenthesis minus left parenthesis 4 left parenthesis 1 right parenthesis squared minus 2 over 3 square root of 1 cubed end root right parenthesis end cell row blank cell equals 166 over 3 end cell end table end style

(b) begin mathsize 20px style integral subscript negative 1 end subscript superscript 2 left parenthesis 1 minus x right parenthesis left parenthesis 1 plus 3 x right parenthesis d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript negative 1 end subscript superscript 2 left parenthesis 1 minus x right parenthesis left parenthesis 1 plus 3 x right parenthesis d x end cell cell equals integral subscript negative 1 end subscript superscript 2 left parenthesis 1 plus 3 x minus x minus 3 x squared right parenthesis d x end cell row blank cell equals integral subscript negative 1 end subscript superscript 2 left parenthesis 1 plus 2 x minus 3 x squared right parenthesis d x end cell row blank cell equals left parenthesis x plus x squared minus x cubed right parenthesis vertical line subscript negative 1 end subscript superscript 2 end cell row blank cell equals left parenthesis 2 plus 2 squared minus 2 cubed right parenthesis minus left parenthesis negative 1 plus left parenthesis negative 1 right parenthesis squared minus left parenthesis negative 1 right parenthesis cubed right parenthesis end cell row blank cell equals negative 3 end cell end table end style

 

أتحقق من فهمي صفحة (24):

إذا كان: begin mathsize 20px style bold integral subscript bold 0 superscript bold k bold 6 bold italic x to the power of bold 2 bold italic d bold italic x bold equals bold 2 end style ، فأجد قيمة الثابت k .

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral subscript 0 superscript k 6 x squared d x equals 2 end cell row blank cell 2 x cubed vertical line subscript 0 superscript k equals 2 end cell row blank cell 2 k cubed minus 2 left parenthesis 0 right parenthesis cubed equals 2 end cell row blank cell 2 k cubed equals 2 end cell row blank cell k cubed equals 1 end cell row blank cell k equals 1 end cell end table end style


خصائص التكامل المحدود

أتحقق من فهمي صفحة (26):

إذا كان: begin mathsize 20px style bold integral subscript bold minus bold 1 end subscript superscript bold 1 bold italic f bold left parenthesis bold italic x bold right parenthesis bold italic d bold italic x bold equals bold 5 bold comma bold integral subscript bold 4 superscript bold 1 bold italic f bold left parenthesis bold italic x bold right parenthesis bold italic d bold italic x bold equals bold 2 bold comma bold integral subscript bold minus bold 1 end subscript superscript bold 1 bold italic h bold left parenthesis bold italic x bold right parenthesis bold italic d bold italic x bold equals bold 7 end style ، فأجد قيمة كل مما يأتي:

(a) begin mathsize 20px style integral subscript negative 1 end subscript superscript 1 left parenthesis f left parenthesis x right parenthesis plus 3 h left parenthesis x right parenthesis right parenthesis d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript negative 1 end subscript superscript 1 left parenthesis f left parenthesis x right parenthesis plus 3 h left parenthesis x right parenthesis right parenthesis d x end cell cell equals integral subscript negative 1 end subscript superscript 1 f left parenthesis x right parenthesis d x plus integral subscript negative 1 end subscript superscript 1 3 h left parenthesis x right parenthesis d x end cell row blank cell equals integral subscript negative 1 end subscript superscript 1 f left parenthesis x right parenthesis d x plus 3 integral subscript negative 1 end subscript superscript 1 h left parenthesis x right parenthesis d x end cell row blank cell equals 5 plus 3 left parenthesis 7 right parenthesis end cell row blank cell equals 26 end cell end table end style

(b) begin mathsize 20px style integral subscript negative 1 end subscript superscript 4 f left parenthesis x right parenthesis d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript negative 1 end subscript superscript 4 f left parenthesis x right parenthesis d x end cell cell equals integral subscript negative 1 end subscript superscript 1 f left parenthesis x right parenthesis d x plus integral subscript 1 superscript 4 f left parenthesis x right parenthesis d x end cell row blank cell equals integral subscript negative 1 end subscript superscript 1 f left parenthesis x right parenthesis d x minus integral subscript 4 superscript 1 f left parenthesis x right parenthesis d x end cell row blank cell equals 5 minus 2 end cell row blank cell equals 3 end cell end table end style

(c) begin mathsize 20px style integral subscript 1 superscript negative 1 end superscript 4 h left parenthesis x right parenthesis d x end style

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript 1 superscript negative 1 end superscript 4 h left parenthesis x right parenthesis d x end cell cell equals negative integral subscript negative 1 end subscript superscript 1 4 h left parenthesis x right parenthesis d x end cell row blank cell equals negative 4 integral subscript negative 1 end subscript superscript 1 h left parenthesis x right parenthesis d x end cell row blank cell equals negative 4 left parenthesis 7 right parenthesis end cell row blank cell equals negative 28 end cell end table end style


تكاملات الاقترانات المتشعبة

أتحقق من فهمي صفحة (27):

(a) إذا كان: begin mathsize 20px style f left parenthesis x right parenthesis equals left curly bracket table attributes columnalign left left columnspacing 1em end attributes row cell 1 plus x end cell cell comma x less than 1 end cell row cell 2 x end cell cell comma x greater or equal than 1 end cell end table end style ، فأجد قيمة: begin mathsize 20px style integral subscript negative 2 end subscript superscript 2 f left parenthesis x right parenthesis d x end style

بما أن الاقتران تشعب عند 1 ، فإنني أجزىء التكامل عنده:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell integral subscript negative 2 end subscript superscript 2 f left parenthesis x right parenthesis d x end cell cell equals integral subscript negative 2 end subscript superscript 1 left parenthesis 1 plus x right parenthesis d x plus integral subscript 1 superscript 2 2 x d x end cell row blank cell equals left parenthesis x plus 1 half x squared right parenthesis vertical line subscript negative 2 end subscript superscript 1 plus x squared vertical line subscript 1 superscript 2 end cell row blank cell equals left parenthesis 1 plus 1 half left parenthesis 1 right parenthesis squared right parenthesis minus left parenthesis negative 2 plus 1 half left parenthesis negative 2 right parenthesis squared right parenthesis plus left parenthesis 2 squared minus 1 squared right parenthesis end cell row blank cell equals 9 over 2 end cell end table end style

 

(b) إذا كان: begin mathsize 20px style f left parenthesis x right parenthesis equals vertical line x minus 3 vertical line end style ، فأجد قيمة: begin mathsize 20px style integral subscript negative 1 end subscript superscript 4 f left parenthesis x right parenthesis d x end style

أعيد تعريف اقتران القيمة المطلقة:

begin mathsize 20px style f left parenthesis x right parenthesis equals vertical line x minus 3 vertical line equals left curly bracket table attributes columnalign left left columnspacing 1em end attributes row cell 3 minus x comma end cell cell x less than 3 end cell row cell x minus 3 comma end cell cell x greater or equal than 3 end cell end table end style

بما أن الاقتران تشعب عند 3 ، فإنني أجزىء التكامل عنده:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell integral subscript negative 1 end subscript superscript 4 f left parenthesis x right parenthesis d x equals integral subscript negative 1 end subscript superscript 3 left parenthesis 3 minus x right parenthesis d x plus integral subscript 3 superscript 4 left parenthesis x minus 3 right parenthesis d x end cell row blank cell equals left parenthesis 3 x minus 1 half x squared right parenthesis vertical line subscript negative 1 end subscript superscript 3 plus left parenthesis 1 half x squared minus 3 x right parenthesis vertical line subscript 3 superscript 4 end cell row blank cell equals left parenthesis 3 left parenthesis 3 right parenthesis minus 1 half left parenthesis 3 right parenthesis squared right parenthesis minus left parenthesis 3 left parenthesis negative 1 right parenthesis minus 1 half left parenthesis negative 1 right parenthesis squared right parenthesis plus left parenthesis 1 half left parenthesis 4 right parenthesis squared minus 3 left parenthesis 4 right parenthesis right parenthesis minus left parenthesis 1 half left parenthesis 3 right parenthesis squared minus 3 left parenthesis 3 right parenthesis right parenthesis end cell row blank cell equals 17 over 2 end cell end table end style

التكامل المحدود، ومقدار التغير

أتحقق من فهمي صفحة (29):

معتمداً المعلومات الوارد ذكرها في المثال 5 ، أجد مقدار التغير الشهري في أرباح الشركة عند زيادة مبيعاتها الشهرية إلى 1500 جهاز، علماً بأنّ عدد الأجهزة المبيعة الآن هو 1400 جهاز.

begin mathsize 20px style P to the power of straight prime left parenthesis x right parenthesis equals 165 minus 0.1 x end style

مقدار التغير الشهري في أرباح الشركة عند زيادة مبيعاتها الشهرية من 1400 جهاز إلى 1500 جهاز هو:

begin mathsize 20px style table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell f left parenthesis b right parenthesis minus f left parenthesis a right parenthesis equals integral subscript a superscript b C to the power of straight prime left parenthesis x right parenthesis d x end cell row blank cell f left parenthesis 1500 right parenthesis minus f left parenthesis 1400 right parenthesis equals integral subscript 1400 superscript 1500 left parenthesis 165 minus 0.1 x right parenthesis d x end cell row blank cell equals left parenthesis 165 x minus 0.05 x squared right parenthesis vertical line subscript 1400 superscript 1500 end cell row blank cell equals left parenthesis 165 left parenthesis 1500 right parenthesis minus 0.05 left parenthesis 1500 right parenthesis squared right parenthesis minus left parenthesis 165 left parenthesis 1400 right parenthesis minus 0.05 left parenthesis 1400 right parenthesis squared right parenthesis end cell row blank cell equals 2000 end cell end table end style

إذن، عند زيادة مبيعات الشركة من 1400 جهاز إلى 1500 جهاز، فإن أرباح الشركة ستزيد شهرياً بمقدار 2000 دينار.

إعداد : شبكة منهاجي التعليمية

01 / 02 / 2023

النقاشات